Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biochim Biophys Acta ; 1837(9): 1500-6, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24561227

RESUMEN

In the last ten years, a large series of studies have targeted antenna complexes of plants (Lhc) with the aim of understanding the mechanisms of light harvesting and photoprotection. Combining spectroscopy, modeling and mutation analyses, the role of individual pigments in these processes has been highlighted in vitro. In plants, however, these proteins are associated with multiple complexes of the photosystems and function within this framework. In this work, we have envisaged a way to bridge the gap between in vitro and in vivo studies by knocking out in vivo pigments that have been proposed to play an important role in excitation energy transfer between the complexes or in photoprotection. We have complemented a CP24 knock-out mutant of Arabidopsis thaliana with the CP24 (Lhcb6) gene carrying a His-tag and with a mutated version lacking the ligand for chlorophyll 612, a specific pigment that in vitro experiments have indicated as the lowest energy site of the complex. Both complexes efficiently integrated into the thylakoid membrane and assembled into the PSII supercomplexes, indicating that the His-tag does not impair the organization in vivo. The presence of the His-tag allowed the purification of CP24-WT and of CP24-612 mutant in their native states. It is shown that CP24-WT coordinates 10 chlorophylls and 2 carotenoid molecules and has properties identical to those of the reconstituted complex, demonstrating that the complex self-assembled in vitro assumes the same folding as in the plant. The absence of the ligand for chlorophyll 612 leads to the loss of one Chl a and of lutein, again as in vitro, indicating the feasibility of the method. This article is part of a special issue entitled: photosynthesis research for sustainability: keys to produce clean energy.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Unión a Clorofila/metabolismo , Clorofila/metabolismo , Complejos de Proteína Captadores de Luz/metabolismo , Mutación , Sitios de Unión , Tilacoides/química
2.
Biophys J ; 100(11): 2829-38, 2011 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-21641329

RESUMEN

Plant photosynthesis relies on the capacity of chlorophylls and carotenoids to absorb light. One of the roles of carotenoids is to harvest green-blue light and transfer the excitation energy to the chlorophylls. The corresponding dynamics were investigated here for the first time, to our knowledge, in the CP26 and CP24 minor antenna complexes. The results for the two complexes differ substantially. In CP26 fast transfer (80 fs) occurs from the carotenoid S(2) state to chlorophylls a absorbing at 675 and 678 nm, whereas transfer from the hot S(1) state to the lowest energy chlorophylls is observed in <1 ps. In CP24, energy transfer from the S(2) state leads in 80 fs to the population of chlorophylls b and high-energy chlorophylls a absorbing at 670 nm, whereas the low-energy chlorophylls a are populated only in several picoseconds. The results suggest that CP26 has a structural and functional organization similar to that of LHCII, whereas CP24 differs substantially from the other Lhc complexes, especially regarding the lutein L1 binding domain. No energy transfer from the carotenoid S(1) state to chlorophylls was observed in either complex, suggesting that this state is energetically below the chlorophyll Qy state and therefore may play a role in the quenching of chlorophyll excitations.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Carotenoides/metabolismo , Complejos de Proteína Captadores de Luz/metabolismo , Luz , Complejo de Proteína del Fotosistema II/metabolismo , Absorción , Arabidopsis , Proteínas de Arabidopsis/química , Carotenoides/química , Clorofila/metabolismo , Proteínas de Unión a Clorofila , Transferencia de Energía/efectos de la radiación , Complejos de Proteína Captadores de Luz/química , Complejo de Proteína del Fotosistema II/química , Unión Proteica/efectos de la radiación , Análisis Espectral
3.
Biophys J ; 99(12): 4056-65, 2010 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-21156149

RESUMEN

Antenna complexes are key components of plant photosynthesis, the process that converts sunlight, CO2, and water into oxygen and sugars. We report the first (to our knowledge) femtosecond transient absorption study on the light-harvesting pigment-protein complexes CP26 (Lhcb5) and CP24 (Lhcb6) of Photosystem II. The complexes are excited at three different wavelengths in the chlorophyll (Chl) Qy region. Both complexes show a single subpicosecond Chl b to Chl a transfer process. In addition, a reduction in the population of the intermediate states (in the 660-670 nm range) as compared to light-harvesting complex II is correlated in CP26 to the absence of both Chls a604 and b605. However, Chl forms around 670 nm are still present in the Chl a Qy range, which undergoes relaxation with slow rates (10-15 ps). This reduction in intermediate-state amplitude CP24 shows a distinctive narrow band at 670 nm connected with Chls b and decaying to the low-energy Chl a states in 3-5 ps. This 670 nm band, which is fully populated in 0.6 ps together with the Chl a low-energy states, is proposed to originate from Chl 602 or 603. In this study, we monitored the energy flow within two minor complexes, and our results may help elucidate these structures in the future.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Transferencia de Energía , Complejos de Proteína Captadores de Luz/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Proteínas de Unión a Clorofila , Cinética , Pigmentos Biológicos/metabolismo , Análisis Espectral , Factores de Tiempo
4.
Biochim Biophys Acta ; 1797(4): 501-8, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20097154

RESUMEN

In this work we have investigated the origin of the multi-exponential fluorescence decay and of the short excited-state lifetime of Lhca4. Lhca4 is the antenna complex of Photosystem I which accommodates the red-most chlorophyll forms and it has been proposed that these chlorophylls can play a role in fluorescence quenching. Here we have compared the fluorescence decay of Lhca4 with that of several Lhca4 mutants that are affected in their red form content. The results show that neither the multi-exponentiality of the decay nor the fluorescence quenching is due to the red forms. The data indicate that Lhca4 exists in multiple conformations. The presence of the red forms, which are very sensitive to changes in the environment, allows to spectrally resolve the different conformations: a "blue" conformation with a short lifetime and a "red" one with a long lifetime. This finding strongly supports the idea that the members of the Lhc family are able to adopt different conformations associated with their light-harvesting and photoprotective roles. The ratio between the conformations is modified by the substitution of lutein by violaxanthin. Finally, it is demonstrated that the red forms cannot be present in the quenched conformation.


Asunto(s)
Proteínas de Arabidopsis/química , Complejos de Proteína Captadores de Luz/química , Complejo de Proteína del Fotosistema I/química , Conformación Proteica , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Unión a Clorofila , Fluorescencia , Complejos de Proteína Captadores de Luz/genética , Complejos de Proteína Captadores de Luz/metabolismo , Modelos Moleculares , Mutación , Complejo de Proteína del Fotosistema I/genética , Complejo de Proteína del Fotosistema I/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Espectrometría de Fluorescencia
5.
Biochim Biophys Acta ; 1797(2): 212-21, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19853576

RESUMEN

The outer antenna system of Chlamydomonas reinhardtii Photosystem I is composed of nine gene products, but due to difficulty in purification their individual properties are not known. In this work, the functional properties of the nine Lhca antennas of Chlamydomonas, have been investigated upon expression of the apoproteins in bacteria and refolding in vitro of the pigment-protein complexes. It is shown that all Lhca complexes have a red-shifted fluorescence emission as compared to the antenna complexes of Photosystem II, similar to Lhca from higher plants, but less red-shifted. Three complexes, namely Lhca2, Lhca4 and Lhca9, exhibit emission maxima above 707 nm and all carry an asparagine as ligand for Chl 603. The comparison of the protein sequences and the biochemical/spectroscopic properties of the refolded Chlamydomonas complexes with those of the well-characterized Arabidopsis thaliana Lhcas shows that all the Chlamydomonas complexes have a chromophore organization similar to that of A. thaliana antennas, particularly to Lhca2, despite low sequence identity. All the major biochemical and spectroscopic properties of the Lhca complexes have been conserved through the evolution, including those involved in "red forms" absorption. It has been proposed that in Chlamydomonas PSI antenna size and polypeptide composition can be modulated in vivo depending on growth conditions, at variance as compared to higher plants. Thus, the different properties of the individual Lhca complexes can be functional to adapt the architecture of the PSI-LHCI supercomplex to different environmental conditions.


Asunto(s)
Chlamydomonas reinhardtii/genética , Complejos de Proteína Captadores de Luz/genética , Luz , Complejo de Proteína del Fotosistema I/genética , Secuencia de Aminoácidos , Arabidopsis/química , Chlamydomonas reinhardtii/metabolismo , Dicroismo Circular , Cartilla de ADN , Datos de Secuencia Molecular , Pigmentos Biológicos/metabolismo , Homología de Secuencia de Aminoácido
6.
J Biol Chem ; 284(43): 29536-46, 2009 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-19700403

RESUMEN

CP24 is a minor antenna complex of Photosystem II, which is specific for land plants. It has been proposed that this complex is involved in the process of excess energy dissipation, which protects plants from photodamage in high light conditions. Here, we have investigated the functional architecture of the complex, integrating mutation analysis with time-resolved spectroscopy. A comprehensive picture is obtained about the nature, the spectroscopic properties, and the role in the quenching in solution of the pigments in the individual binding sites. The lowest energy absorption band in the chlorophyll a region corresponds to chlorophylls 611/612, and it is not the site of quenching in CP24. Chlorophylls 613 and 614, which are present in the major light-harvesting complex of Photosystem appear to be absent in CP24. In contrast to all other light-harvesting complexes, CP24 is stable when the L1 carotenoid binding site is empty and upon mutations in the third helix, whereas mutations in the first helix strongly affect the folding/stability of the pigment-protein complex. The absence of lutein in L1 site does not have any effect on the quenching, whereas substitution of violaxanthin in the L2 site with lutein or zeaxanthin results in a complex with enhanced quenched fluorescence. Triplet-minus-singlet measurements indicate that zeaxanthin and lutein in site L2 are located closer to chlorophylls than violaxanthin, thus suggesting that they can act as direct quenchers via a strong interaction with a neighboring chlorophyll. The results provide the molecular basis for the zeaxanthin-dependent quenching in isolated CP24.


Asunto(s)
Proteínas de Arabidopsis/química , Arabidopsis/química , Clorofila/química , Complejo de Proteína del Fotosistema II/química , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sitios de Unión/fisiología , Clorofila/genética , Clorofila/metabolismo , Mutación , Complejo de Proteína del Fotosistema II/genética , Complejo de Proteína del Fotosistema II/metabolismo , Xantófilas/química , Xantófilas/genética , Xantófilas/metabolismo
7.
Photochem Photobiol ; 84(6): 1359-70, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-19067957

RESUMEN

To avoid photodamage, photosynthetic organisms have developed mechanisms to evade or dissipate excess energy. Lumen overacidification caused by light-induced electron transport triggers quenching of excited chlorophylls and dissipation of excess energy into heat. In higher plants participation of the PsbS protein as the sensor of low lumenal pH was clearly demonstrated. Although light-dependent energy quenching is a property of all photosynthetic organisms, large differences in amplitude and kinetics can be observed thus raising the question whether a single common mechanism is in action. We performed a detailed study of PsbS expression/accumulation in Chlamydomonas reinhardtii and investigated its accumulation in other algae and plants. We showed that PsbS cannot be detected in Chlamydomonas under a wide range of growth conditions. Overexpression of the endogenous psbs gene showed that the corresponding protein could not be addressed to the thylakoid membranes. Survey of different unicellular green algae showed no accumulation of anti-PsbS reactive proteins differently from multicellular species. Nevertheless, some unicellular species exhibit high energy quenching activity, suggesting that a PsbS-independent mechanism is activated. By correlating growth habitat and PsbS accumulation in different species, we suggest that during the evolution the light environment has been a determinant factor for the conservation/loss of the PsbS function.


Asunto(s)
Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Transferencia de Energía , Fotosíntesis , Complejo de Proteína del Fotosistema II/metabolismo , Secuencia de Aminoácidos , Animales , Anticuerpos/inmunología , Chlamydomonas reinhardtii/enzimología , Chlamydomonas reinhardtii/inmunología , Color , Reacciones Cruzadas/inmunología , Epítopos/inmunología , Regulación Enzimológica de la Expresión Génica , Datos de Secuencia Molecular , Mutación/genética , Fenotipo , Complejo de Proteína del Fotosistema II/química , Complejo de Proteína del Fotosistema II/genética , Complejo de Proteína del Fotosistema II/inmunología , Filogenia , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido
8.
Biochim Biophys Acta ; 1777(10): 1263-7, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18486590

RESUMEN

In bright sunlight, the amount of energy harvested by plants exceeds the electron transport capacity of Photosystem II in the chloroplasts. The excess energy can lead to severe damage of the photosynthetic apparatus and to avoid this, part of the energy is thermally dissipated via a mechanism called non-photochemical quenching (NPQ). It has been found that LHCII, the major antenna complex of Photosystem II, is involved in this mechanism and it was proposed that its quenching site is formed by the cluster of strongly interacting pigments: chlorophylls 611 and 612 and lutein 620 [A.V. Ruban, R. Berera, C. Ilioaia, I.H.M. van Stokkum, J.T.M. Kennis, A.A. Pascal, H. van Amerongen, B. Robert, P. Horton and R. van Grondelle, Identification of a mechanism of photoprotective energy dissipation in higher plants, Nature 450 (2007) 575-578.]. In the present work we have investigated the interactions between the pigments in this cluster not only for LHCII, but also for the homologous minor antenna complexes CP24, CP26 and CP29. Use was made of wild-type and mutated reconstituted complexes that were analyzed with (low-temperature) absorption and circular-dichroism spectroscopy as well as by biochemical methods. The pigments show strong interactions that lead to highly specific spectroscopic properties that appear to be identical for LHCII, CP26 and CP29. The interactions are similar but not identical for CP24. It is concluded that if the 611/612/620 domain is responsible for the quenching in LHCII, then all these antenna complexes are prepared to act as a quencher. This can explain the finding that none of the Lhcb complexes seems to be strictly required for NPQ while, in the absence of all of them, NPQ is abolished.


Asunto(s)
Complejos de Proteína Captadores de Luz/metabolismo , Luz , Complejo de Proteína del Fotosistema II/metabolismo , Proteínas de Plantas/metabolismo , Arabidopsis/química , Arabidopsis/genética , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Transporte de Electrón/fisiología , Complejos de Proteína Captadores de Luz/química , Modelos Moleculares , Estructura Molecular , Mutagénesis Sitio-Dirigida , Complejo de Proteína del Fotosistema II/química , Proteínas de Plantas/química , Proteínas de Plantas/genética , Zea mays/química , Zea mays/genética , Zea mays/metabolismo
9.
FEBS Lett ; 581(24): 4704-10, 2007 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-17850797

RESUMEN

The location of the neoxanthin binding site in CP26 and CP29 was investigated by site-directed mutagenesis. The crystallographic structure of LHCII shows that the binding of neoxanthin to the N1 site is stabilised by an H bond with a tyrosine in the lumenal loop. This residue is conserved in CP26 and CP29. Mutation of this tyrosine into phenylalanine induced specific loss of neoxanthin without affecting violaxanthin binding. In contrast to previous proposals, it is thus concluded that also in these minor antenna complexes neoxanthin is accommodated in the N1 site. The characteristics of this binding site in the different antenna complexes are discussed.


Asunto(s)
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Complejos de Proteína Captadores de Luz/química , Complejos de Proteína Captadores de Luz/metabolismo , Complejo de Proteína del Fotosistema II/química , Complejo de Proteína del Fotosistema II/metabolismo , Xantófilas/química , Xantófilas/metabolismo , Secuencia de Aminoácidos , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Sitios de Unión , Proteínas de Unión a Clorofila , Dicroismo Circular , Secuencia Conservada , Complejos de Proteína Captadores de Luz/genética , Modelos Moleculares , Datos de Secuencia Molecular , Complejo de Proteína del Fotosistema II/genética , Unión Proteica , Estructura Terciaria de Proteína , Alineación de Secuencia , Espectrofotometría
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA