Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 167
Filtrar
Más filtros










Intervalo de año de publicación
2.
Small ; : e2402035, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38770746

RESUMEN

Solid-state batteries (SSBs) are under development as high-priority technologies for safe and energy-dense next-generation electrochemical energy storage systems operating over a wide temperature range. Solid-state electrolytes (SSEs) exhibit high thermal stability and, in some cases, the ability to prevent dendrite growth through a physical barrier, and compatibility with the "holy grail" metallic lithium. These unique advantages of SSEs have spurred significant research interests during the last decade. Garnet-type SSEs, that is, Li7La3Zr2O12 (LLZO), are intensively investigated due to their high Li-ion conductivity and exceptional chemical and electrochemical stability against lithium metal anodes. However, poor interfacial contact with cathode materials, undesirable lithium plating along grain boundaries, and moisture-induced chemical degradation greatly hinder the practical implementation of LLZO-based SSEs for SSBs. In this review, the recent advances in synthesis methods, modification strategies, corresponding mechanisms, and applications of garnet-based SSEs in SSBs are critically summarized. Furthermore, a comprehensive evaluation of the challenges and development trends of LLZO-based electrolytes in practical applications is presented to accelerate their development for high-performance SSBs.

3.
Adv Mater ; : e2402792, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38616764

RESUMEN

High-energy-density lithium metal batteries (LMBs) are limited by reaction or diffusion barriers with dissatisfactory electrochemical kinetics. Typical conversion-type lithium sulfur battery systems exemplify the kinetic challenges. Namely, before diffusing or reacting in the electrode surface/interior, the Li(solvent)x + dissociation at the interface to produce isolated Li+, is usually a prerequisite fundamental step either for successive Li+ "reduction" or for Li+ to participate in the sulfur conversions, contributing to the related electrochemical barriers. Thanks to the ideal atomic efficiency (100 at%), single atom catalysts (SACs) have gained attention for use in LMBs toward resolving the issues caused by the five types of barrier-restricted processes, including polysulfide/Li2S conversions, Li(solvent)x + desolvation, and Li0 nucleation/diffusion. In this perspective, the tandem reactions including desolvation and reaction or plating and corresponding catalysis behaviors are introduced and analyzed from interface to electrode interior. Meanwhile, the principal mechanisms of highly efficient SACs in overcoming specific energy barriers to reinforce the catalytic electrochemistry are discussed. Lastly, the future development of high-efficiency atomic-level catalysts in batteries is presented.

4.
Adv Mater ; : e2400263, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38412289

RESUMEN

Low-cost and nontoxic deep eutectic liquid electrolytes (DELEs), such as [AlCl3 ]1.3 [Urea] (AU), are promising for rechargeable non-aqueous aluminum metal batteries (AMBs). However, their high viscosity and sluggish ion transport at room temperature lead to high cell polarization and low specific capacity, limiting their practical application. Herein, non-solvating 1,2-difluorobenzene (dFBn) is proposed as a co-solvent of DELEs using AU as model to construct a locally concentrated deep eutectic liquid electrolyte (LC-DELE). dFBn effectively improves the fluidity and ion transport without affecting the ionic dynamics in the electrolyte. Moreover, dFBn also modifies the solid electrolyte interphase growing on the aluminum metal anodes and reduces the interfacial resistance. As a result, the lifespan of Al/Al cells is improved from 210 to 2000 h, and the cell polarization is reduced from 0.36 to 0.14 V at 1.0 mA cm-2 . The rate performance of Al-graphite cells is greatly improved with a polarization reduction of 0.15 and 0.74 V at 0.1 and 1 A g-1 , respectively. The initial discharge capacity of Al-sulfur cells is improved from 94 to 1640 mAh g-1 . This work provides a feasible solution to the high polarization of AMBs employing DELEs and a new path to high-performance low-cost AMBs.

5.
Angew Chem Int Ed Engl ; 63(10): e202318204, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38244210

RESUMEN

Aluminum-sulfur (Al-S) batteries are promising energy storage devices due to their high theoretical capacity, low cost, and high safety. However, the high viscosity and inferior ion transport of conventionally used ionic liquid electrolytes (ILEs) limit the kinetics of Al-S batteries, especially at sub-zero temperatures. Herein, locally concentrated ionic liquid electrolytes (LCILE) formed via diluting the ILEs with non-solvating 1,2-difluorobenzene (dFBn) co-solvent are proposed for wide-temperature-range Al-S batteries. The addition of dFBn effectively promotes the fluidity and ionic conductivity without affecting the AlCl4 - /Al2 Cl7 - equilibrium, which preserves the reversible stripping/plating of aluminum and further promotes the overall kinetics of Al-S batteries. As a result, Al-S cells employing the LCILE exhibit higher specific capacity, better cyclability, and lower polarization with respect to the neat ILE in a wide temperature range from -20 to 40 °C. For instance, Al-S batteries employing the LCILE sustain a remarkable capacity of 507 mAh g-1 after 300 cycles at 20 °C, while only 229 mAh g-1 is delivered with the dFBn-free electrolyte under the same condition. This work demonstrates the favorable use of LCILEs for wide-temperature Al-S batteries.

6.
Adv Mater ; 36(1): e2309062, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37956687

RESUMEN

Lithium metal batteries (LMBs) with nickel-rich cathodes are promising candidates for next-generation high-energy-density batteries, but the lack of sufficiently protective electrode/electrolyte interphases (EEIs) limits their cyclability. Herein, trifluoromethoxybenzene is proposed as a cosolvent for locally concentrated ionic liquid electrolytes (LCILEs) to reinforce the EEIs. With a comparative study of a neat ionic liquid electrolyte (ILE) and three LCILEs employing fluorobenzene, trifluoromethylbenzene, or trifluoromethoxybenzene as cosolvents, it is revealed that the fluorinated groups tethered to the benzene ring of the cosolvents not only affect the electrolytes' ionic conductivity and fluidity, but also the EEIs' composition via adjusting the contribution of the 1-ethyl-3-methylimidazolium cation (Emim+ ) and bis(fluorosulfonyl)imide anion. Trifluoromethoxybenzene, as the optimal cosolvent, leads to a stable cycling of LMBs employing 5 mAh cm-2 lithium metal anodes (LMAs), 21 mg cm-2 LiNi0.8 Co0.15 Al0.05 (NCA) cathodes, and 4.2 µL mAh-1 electrolytes for 150 cycles with a remarkable capacity retention of 71%, thanks to a solid electrolyte interphase rich in inorganic species on LMAs and, particularly, a uniform cathode/electrolyte interphase rich in Emim+ -derived species on NCA cathodes. By contrast, the capacity retention under the same condition is only 16%, 46%, and 18% for the neat ILE and the LCILEs based on fluorobenzene and benzotrifluoride, respectively.

7.
ACS Nano ; 17(24): 25234-25242, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38063178

RESUMEN

Aluminum-sulfur (Al-S) batteries have attracted extensive interest due to their high theoretical energy density, inherent safety, and low cost. However, severe polarization and poor cycling performance significantly limit the development of Al-S batteries. Herein, three-dimensional (3D) nitrogen-doped carbonaceous networks anchored with cobalt (Co@CMel-ZIF) is proposed as a separator modification layer to mitigate these issues, prepared via carbonizations of a mixture of ZIF-7, melamine, and CoCl2. It exhibits a 3D network structure with a moderate surface area and high average pore diameter, which is demonstrated to be effective in adsorbing the aluminum polysulfides and hindering the mobility of polysulfides across the separator for enhanced cyclic stability of Al-S batteries. Meanwhile, Co@CMel-ZIF are characterized by abundant catalytic pyridinic-N and Co-Nx active sites that effectively eliminate the barrier of sulfides' conversion and thereby facilitate the polarization reduction. As a result, Al-S cells based on the separator modified with Co@CMel-ZIF exhibit a low voltage polarization of 0.47 V under the current density of 50 mA g-1 at 20 °C and a high discharge specific capacity of 503 mAh g-1 after 150 cycles. In contrast, the cell employing a bare separator exhibits a polarization of 1.01 V and a discharge capacity of 300 mAh g-1 after 70 cycles under the same conditions. This work demonstrates that modifying the separators is a promising strategy to mitigate the high polarization and poor cyclability of Al-S batteries.

8.
Artículo en Inglés | MEDLINE | ID: mdl-37852614

RESUMEN

Poly(2,2,6,6-tetramethyl-1-piperidinyloxy methacrylate) (PTMA) is one of the most promising organic cathode materials thanks to its relatively high redox potential, good rate performance, and cycling stability. However, being a p-type material, PTMA-based batteries pose additional challenges compared to conventional lithium-ion systems due to the involvement of anions in the redox process. This study presents a comprehensive approach to optimize such batteries, addressing challenges in electrode design, scalability, and cost. Experimental results at a laboratory scale demonstrate high active mass loadings of PTMA electrodes (up to 9.65 mg cm-2), achieving theoretical areal capacities that exceed 1 mAh cm-2. Detailed physics-based simulations and cost and performance analysis clarify the critical role of the electrolyte and the impact of the anion amount in the PTMA redox process, highlighting the benefits and the drawbacks of using highly concentrated electrolytes. The cost and energy density of lithium metal batteries with such high mass loading PTMA cathodes were simulated, finding that their performance is inferior to batteries based on inorganic cathodes even in the most optimistic conditions. In general, this work emphasizes the importance of considering a broader perspective beyond the lab scale and highlights the challenges in upscaling to realistic battery configurations.

9.
Small Methods ; 7(11): e2300718, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37608445

RESUMEN

Manganese hexacyanoferrate is a promising cathode material for lithium and sodium ion batteries, however, it suffers of capacity fading during the cycling process. To access the structural and functional characteristics at the nanometer scale, fresh and cycled electrodes are extracted and investigated by transmission soft X-ray microscopy, which allows chemical characterization with spatial resolution from position-dependent x-ray spectra at the Mn L-, Fe L- and N K-edges. Furthermore, soft X-rays prove to show superior sensitivity toward Fe, compare to hard X-rays. Inhomogeneities within the samples are identified, increasing in the aged electrodes, more dramatically in the Li-ion system, which explains the poorer cycle life as Li-ion cathode material. Local spectra, revealing different oxidation states over the sample with strong correlation between the Fe L-edge, Mn L-edge, and N K-edge, imply a coupling between redox centers and an electron delocalization over the host framework.

10.
Angew Chem Int Ed Engl ; 62(43): e202308699, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37496056

RESUMEN

Sodium-metal batteries (SMBs) are considered a potential alternative to high-energy lithium-metal batteries (LMBs). However, the high reactivity of metallic sodium towards common liquid organic electrolytes renders such battery technology particularly challenging. Herein, we propose a multi-block single-ion conducting polymer electrolyte (SIPE) doped with ethylene carbonate as suitable electrolyte system for SMBs. This novel SIPE provides a very high ionic conductivity (2.6 mS cm-1 ) and an electrochemical stability window of about 4.1 V at 40 °C, enabling stable sodium stripping and plating and excellent rate capability of Na||Na3 V2 (PO4 )3 cells up to 2 C. Remarkably, such cells provide a capacity retention of about 85 % after 1,000 cycles at 0.2 C thanks to the very high Coulombic efficiency (99.9 %), resulting from an excellent interfacial stability towards sodium metal and the Na3 V2 (PO4 )3 cathode.

11.
Small Methods ; : e2300554, 2023 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-37421218

RESUMEN

Rechargeable aqueous zinc-metal batteries (AZBs) are a promising complimentary technology to the existing lithium-ion batteries and the re-emerging lithium-metal batteries to satisfy the increasing demands on energy storage. Despite considerable progress achieved in the past years, the fundamental understanding of the solid-electrolyte interphase (SEI) formation and how its composition influences the SEI properties are limited. This review highlights the functionalities of anion-tuned SEI on the reversibility of zinc-metal anode, with a specific emphasis on new structural insights obtained through advanced characterizations and computational techniques. Recent efforts in terms of key variables that govern the interfacial behaviors to improve the long-term stability of zinc anode, i.e., Coulombic efficiency, plating morphology, dendrite formation, and side-reactions, are comprehensively reviewed. Lastly, the remaining challenges and future perspectives are presented, providing insights into the rational design of practical high-performance AZBs.

12.
Chem Commun (Camb) ; 59(51): 7982-7985, 2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37283527

RESUMEN

The distribution of degradation products, before and after cycling, within common sulfide-based solid electrolytes (ß-Li3PS4, Li6PS5Cl and Li10GeP2S12) was mapped using Raman microscopy. All composite electrodes displayed the appearance of side reaction products after the initial charge-discharge cycle, located at the site of a LiNi0.6Mn0.2Co0.2O2 particle.


Asunto(s)
Líquidos Corporales , Electrodos , Litio , Microscopía , Sulfuros
13.
Adv Mater ; 35(39): e2302828, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37341309

RESUMEN

The lithium-metal anode is a promising candidate for realizing high-energy-density batteries owing to its high capacity and low potential. However, several rate-limiting kinetic obstacles, such as the desolvation of Li+ solvation structure to liberate Li+ , Li0 nucleation, and atom diffusion, cause heterogeneous spatial Li-ion distribution and fractal plating morphology with dendrite formation, leading to low Coulombic efficiency and depressive electrochemical stability. Herein, differing from pore sieving effect or electrolyte engineering, atomic iron anchors to cation vacancy-rich Co1- x S embedded in 3D porous carbon (SAFe/CVRCS@3DPC) is proposed and demonstrated as catalytic kinetic promoters. Numerous free Li ions are electrocatalytically dissociated from the Li+ solvation complex structure for uniform lateral diffusion by reducing desolvation and diffusion barriers via SAFe/CVRCS@3DPC, realizing smooth dendrite-free Li morphologies, as comprehensively understood by combined in situ/ex situ characterizations. Encouraged by SAFe/CVRCS@3DPC catalytic promotor, the modified Li-metal anodes achieve smooth plating with a long lifespan (1600 h) and high Coulombic efficiency without any dendrite formation. Paired with the LiFePO4 cathode, the full cell (10.7 mg cm-2 ) stabilizes a capacity retention of 90.3% after 300 cycles at 0.5 C, signifying the feasibility of using interfacial catalysts for modulating Li behaviors toward practical applications.

14.
Angew Chem Int Ed Engl ; 62(31): e202305840, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37249166

RESUMEN

Lithium metal is a promising anode material for next-generation high-energy-density batteries but suffers from low stripping/plating Coulombic efficiency and dendritic growth particularly at sub-zero temperatures. Herein, a poorly-flammable, locally concentrated ionic liquid electrolyte with a wide liquidus range extending well below 0 °C is proposed for low-temperature lithium metal batteries. Its all-anion Li+ solvation and phase-nano-segregation solution structure are sustained at low temperatures, which, together with a solid electrolyte interphase rich in inorganic compounds, enable dendrite-free operation of lithium metal anodes at -20 °C and 0.5 mA cm-2 , with a Coulombic efficiency of 98.9 %. As a result, lithium metal batteries coupling thin lithium metal anodes (4 mAh cm-2 ) and high-loading LiNi0.8 Co0.15 Al0.05 O2 cathodes (10 mg cm-2 ) retain 70 % of the initial capacity after 100 cycles at -20 °C. These results, as a proof of concept, demonstrate the applicability of locally concentrated ionic liquid electrolytes for low-temperature lithium metal batteries.

15.
ACS Appl Mater Interfaces ; 15(21): 25462-25472, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37204404

RESUMEN

Rechargeable lithium-metal batteries (LMBs) are anticipated to enable enhanced energy densities, which can be maximized when minimizing the amount of excess lithium in the cell down to zero, also referred to as "zero excess" LMBs. In this case, the only source of lithium is the positive electrode active material─just like in lithium-ion batteries. However, this requires the fully reversible deposition of metallic lithium, i.e., the Coulombic efficiency (CE) approaching 100%. Herein, the lithium plating from ionic liquid-based electrolytes, composed of N-butyl-N-methyl pyrrolidinium bis(fluorosulfonyl)imide (PYR14FSI) and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) as the conducting salt, on nickel current collectors is investigated via a comprehensive set of electrochemical techniques coupled with operando and in situ atomic force microscopy and ex situ X-ray photoelectron spectroscopy. The investigation involves the use of fluoroethylene carbonate (FEC) as an electrolyte additive. The results show that an elevated LiTFSI concentration leads to a lower overpotential for the lithium nucleation and a more homogeneous deposition. The incorporation of FEC results in a further lowered overpotential and a stabilized solid electrolyte interphase, enabling a substantially enhanced CE.

16.
ACS Appl Mater Interfaces ; 15(17): 20987-20997, 2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37079779

RESUMEN

To increase the energy density of today's lithium batteries, it is necessary to develop an anode with higher energy density than graphite or carbon/silicon composites. Hence, research on metallic lithium has gained a steadily increasing momentum. However, the severe safety issues and poor Coulombic efficiency of this highly reactive metal hinder its practical application in lithium-metal batteries (LMBs). Herein, the development of an artificial interphase is reported to enhance the reversibility of the lithium stripping/plating process and suppress the parasitic reactions with the liquid organic carbonate-based electrolyte. This artificial interphase is spontaneously formed by an alloying reaction-based coating, forming a stable inorganic/organic hybrid interphase. The accordingly modified lithium-metal electrodes provide substantially improved cycle life to symmetric Li||Li cells and high-energy Li||LiNi0.8Co0.1Mn0.1O2 cells. For these LMBs, 7 µm thick lithium-metal electrodes have been employed while applying a current density of 1.0 mA cm-2, thus highlighting the great potential of this tailored interphase.

17.
ChemSusChem ; 16(12): e202300201, 2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-36852937

RESUMEN

Manganese hexacyanoferrates (MnHCF) are promising positive electrode materials for non-aqueous batteries, including Na-ion batteries, due to their large specific capacity (>130 mAh g-1 ), high discharge potential and sustainability. Typically, the electrochemical reaction of MnHCF associates with phase and structural changes, due to the Jahn-Teller (JT) distortion of Mn sites upon the charge process. To understand the effect of the MnHCF structure on its electrochemical performance, two MnHCF materials with different vacancies content are investigated herein. The electrochemical results show that the sample with lower vacancy content (4 %) exhibits relatively higher capacity retention of 99.1 % and 92.6 % at 2nd and 10th cycles, respectively, with respect to 97.4 % and 79.3 % in sample with higher vacancy content (11 %). Ex-situ X-ray absorption spectroscopy (XAS) and ex situ X-ray diffraction (XRD) characterization results show that a weaker cooperative JT-distortion effect and relatively smaller crystal structure modification occurred for the material with lower vacancies, which explains the better electrochemical performance in cycled electrodes.


Asunto(s)
Ferrocianuros , Manganeso , Electrodos , Iones
18.
Angew Chem Int Ed Engl ; 62(17): e202219318, 2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-36727727

RESUMEN

Non-flammable ionic liquid electrolytes (ILEs) are well-known candidates for safer and long-lifespan lithium metal batteries (LMBs). However, the high viscosity and insufficient Li+ transport limit their practical application. Recently, non-solvating and low-viscosity co-solvents diluting ILEs without affecting the local Li+ solvation structure are employed to solve these problems. The diluted electrolytes, i.e., locally concentrated ionic liquid electrolytes (LCILEs), exhibiting lower viscosity, faster Li+ transport, and enhanced compatibility toward lithium metal anodes, are feasible options for the next-generation high-energy-density LMBs. Herein, the progress of the recently developed LCILEs are summarised, including their physicochemical properties, solution structures, and applications in LMBs with a variety of high-energy cathode materials. Lastly, a perspective on the future research directions of LCILEs to further understanding and achieve improved cell performances is outlined.

19.
Angew Chem Int Ed Engl ; 62(12): e202218316, 2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36625443

RESUMEN

Solid-state batteries (SSBs) with high-voltage cathode active materials (CAMs) such as LiNi1-x-y Cox Mny O2 (NCM) and poly(ethylene oxide) (PEO) suffer from "noisy voltage" related cell failure. Moreover, reports on their long-term cycling performance with high-voltage CAMs are not consistent. In this work, we verified that the penetration of lithium dendrites through the solid polymer electrolyte (SPE) indeed causes such "noisy voltage cell failure". This problem can be overcome by a simple modification of the SPE using higher molecular weight PEO, resulting in an improved cycling stability compared to lower molecular weight PEO. Furthermore, X-ray photoelectron spectroscopy analysis confirms the formation of oxidative degradation products after cycling with NCM, for what Fourier transform infrared spectroscopy is not suitable as an analytical technique due to its limited surface sensitivity. Overall, our results help to critically evaluate and improve the stability of PEO-based SSBs.

20.
Acc Chem Res ; 56(3): 284-296, 2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36696961

RESUMEN

ConspectusLithium-ion batteries (LIBs) are ubiquitous in all modern portable electronic devices such as mobile phones and laptops as well as for powering hybrid electric vehicles and other large-scale devices. Sodium-ion batteries (NIBs), which possess a similar cell configuration and working mechanism, have already been proven as ideal alternatives for large-scale energy storage systems. The advantages of NIBs are as follows. First, sodium resources are abundantly distributed in the earth's crust. Second, high-performance NIB cathode materials can be fabricated by using solely inexpensive and noncritical transition metals such as manganese and iron, which further reduces the cost of the required raw materials. Recently, the unprecedented demand for lithium and other critical minerals has driven the cost of these primary raw materials (which are utilized in LIBs) to a historic high and thus triggered the commercialization of NIBs.Sodium layered transition metal oxides (NaxTMO2, TM = transition metal/s), such as Mn-based sodium layered oxides, represent an important family of cathode materials with the potential to reduce costs, increase energy density and cycling stability, and improve the safety of NIBs for large-scale energy storage. However, these layered oxides face several key challenges, including irreversible phase transformations during cycling, poor air stability, complex charge-compensation mechanisms, and relatively high cost of the full cell compared to LiFePO4-based LIBs. Our work has focused on the techno-economic analysis, the degradation mechanism of NaxTMO2 upon cycling and air exposure, and the development of effective strategies to improve their electrochemical performances and air stability. Correlating structure-performance relationships and establishing general design strategies of NaxTMO2 must be considered for the commercialization of NIBs.In this Account, we discuss the recent progress in the development of air-stable, electrochemically stable, and cost-effective NaxTMO2. The favorable redox-active cations for NaxTMO2 are emphasized in terms of abundance, cost, supply, and energy density. Different working mechanisms related to NaxTMO2 are summarized, including the electrochemical reversibility, the main structural transformations during the charge and discharge processes, and the charge-compensation mechanisms that accompany the (de)intercalation of Na+ ions, followed by discussions to improve the stability toward ambient air and upon cycling. Then the techno-economics are presented, with an emphasis on cathodes with different chemical compositions, cost breakdown of battery packs, and Na deficiency, factors that are critical to the large-scale implementation. Finally, this Account concludes with an overview of the remaining challenges and new opportunities concerning the practical applications of NaxTMO2, with an emphasis on the cost, large-scale fabrication capability, and electrochemical performance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...