Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Stem Cell Res Ther ; 8(1): 36, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-28202059

RESUMEN

BACKGROUND: Heart failure represents an important public health issue due to its high costs and growing incidence worldwide. Evidence showing the regenerative potential of postmitotic heart tissue has suggested the existence of endogenous cardiac stem cells in adult hearts. Cardiosphere-derived cells (CDC) constitute a candidate pool of such cardiac stem cells. Previous studies using acute myocardial infarction (MI) models in rodents demonstrated an improvement in cardiac function after cell therapy with CDC. We evaluated the therapeutic potential of CDC 60 days after MI in a rat model. METHODS: CDC were obtained from human discarded myocardial tissue and rat hearts by enzymatic digestion with collagenase II. At 10-15 days after isolation, small, round, phase-bright cells (PBCs) appeared on top of the adherent fibroblast-like cells. The PBCs were collected and placed on a nonadherent plate for 2 days, where they formed cardiospheres which were then transferred to adherent plates, giving rise to CDC. These CDC were characterized by flow cytometry. Wistar rats were submitted to MI through permanent occlusion of the anterior descending coronary artery. After 60 days, they were immunosuppressed with cyclosporine A during 10 days. On the third day, infarcted animals were treated with 5 × 105 human CDC (hCDC) or placebo through intramyocardial injection guided by echocardiogram. Another group of animals was treated with rat CDC (rCDC) without immunosuppression. hCDC and rCDC were stably transduced with a viral construct expressing luciferase under control of a constitutive promoter. CDC were then used in a bioluminescence assay. Functional parameters were evaluated by echocardiogram 90 and 120 days after MI and by Langendorff at 120 days. RESULTS: CDC had a predominantly mesenchymal phenotype. Cell tracking by bioluminescence demonstrated over 85% decrease in signal at 5-7 days after cell therapy. Cardiac function evaluation by echocardiography showed no differences in ejection fraction, end-diastolic volume, or end-systolic volume between groups receiving human cells, rat cells, or placebo. Hemodynamic analyses and infarct area quantification confirmed that there was no improvement in cardiac remodeling after cell therapy with CDC. CONCLUSION: Our study challenges the effectiveness of CDC in post-ischemic heart failure.


Asunto(s)
Oclusión Coronaria/terapia , Huésped Inmunocomprometido , Infarto del Miocardio/terapia , Esferoides Celulares/trasplante , Animales , Oclusión Coronaria/diagnóstico por imagen , Oclusión Coronaria/inmunología , Oclusión Coronaria/fisiopatología , Vasos Coronarios/diagnóstico por imagen , Vasos Coronarios/patología , Vasos Coronarios/fisiopatología , Ciclosporina/administración & dosificación , Modelos Animales de Enfermedad , Ecocardiografía , Pruebas de Función Cardíaca , Humanos , Inyecciones Intralesiones , Infarto del Miocardio/diagnóstico por imagen , Infarto del Miocardio/inmunología , Infarto del Miocardio/fisiopatología , Ratas , Ratas Wistar , Esferoides Celulares/citología , Esferoides Celulares/fisiología , Células Madre/citología , Células Madre/fisiología , Insuficiencia del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA