Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 181
Filtrar
1.
Genet Mol Biol ; 47(2): e20230170, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38626573

RESUMEN

Pathogenic DNA alterations in GJB2 are present in nearly half of non-syndromic hearing loss cases with autosomal recessive inheritance. The most frequent variant in GJB2 causing non-syndromic hearing loss is the frameshifting c.35del. GJB2 encodes Cx26, a protein of the connexin family that assembles hemichannels and gap junctions. The expression of paralogous proteins is believed to compensate for the loss of function of specific connexins. As Cx26 has been involved in cell differentiation in distinct tissues, we employed stem cells derived from human exfoliated deciduous teeth (SHEDs), homozygous for the c.35del variant, to assess GJB2 roles in stem cell differentiation and the relationship between its loss of function and the expression of paralogous genes. Primary SHED cultures from patients and control individuals were compared. SHEDs from patients had significantly less GJB2 mRNA and increased amount of GJA1 (Cx43), but not GJB6 (Cx30) or GJB3 (Cx31) mRNA. In addition, they presented higher induced differentiation to adipocytes and osteocytes but lower chondrocyte differentiation. Our results suggest that GJA1 increased expression may be involved in functional compensation for GJB2 loss of function in human stem cells, and it may explain changes in differentiation properties observed in SHEDs with and without the c.35del variant.

2.
HLA ; 103(1): e15282, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37950640

RESUMEN

Human genomics has quickly evolved, powering genome-wide association studies (GWASs). SNP-based GWASs cannot capture the intense polymorphism of HLA genes, highly associated with disease susceptibility. There are methods to statistically impute HLA genotypes from SNP-genotypes data, but lack of diversity in reference panels hinders their performance. We evaluated the accuracy of the 1000 Genomes data as a reference panel for imputing HLA from admixed individuals of African and European ancestries, focusing on (a) the full dataset, (b) 10 replications from 6 populations, and (c) 19 conditions for the custom reference panels. The full dataset outperformed smaller models, with a good F1-score of 0.66 for HLA-B. However, custom models outperformed the multiethnic or population models of similar size (F1-scores up to 0.53, against up to 0.42). We demonstrated the importance of using genetically specific models for imputing populations, which are currently underrepresented in public datasets, opening the door to HLA imputation for every genetic population.


Asunto(s)
Genética de Población , Estudio de Asociación del Genoma Completo , Humanos , Alelos , Genotipo , Antígenos HLA-B , Polimorfismo de Nucleótido Simple
3.
Neuron ; 112(1): 7-24, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38016473

RESUMEN

The forces of evolution-mutation, selection, migration, and genetic drift-shape the genetic architecture of human traits, including the genetic architecture of complex neuropsychiatric illnesses. Studying these illnesses in populations that are diverse in genetic ancestry, historical demography, and cultural history can reveal how evolutionary forces have guided adaptation over time and place. A fundamental truth of shared human biology is that an allele responsible for a disease in anyone, anywhere, reveals a gene critical to the normal biology underlying that condition in everyone, everywhere. Understanding the genetic causes of neuropsychiatric disease in the widest possible range of human populations thus yields the greatest possible range of insight into genes critical to human brain development. In this perspective, we explore some of the relationships between genes, adaptation, and history that can be illuminated by an evolutionary perspective on studies of complex neuropsychiatric disease in diverse populations.


Asunto(s)
Trastornos Mentales , Mutación , Humanos , Trastornos Mentales/genética
4.
Am J Med Genet A ; 191(8): 2015-2044, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37392087

RESUMEN

Phelan-McDermid syndrome (PMS) is a genetic condition caused by SHANK3 haploinsufficiency and characterized by a wide range of neurodevelopmental and systemic manifestations. The first practice parameters for assessment and monitoring in individuals with PMS were published in 2014; recently, knowledge about PMS has grown significantly based on data from longitudinal phenotyping studies and large-scale genotype-phenotype investigations. The objective of these updated clinical management guidelines was to: (1) reflect the latest in knowledge in PMS and (2) provide guidance for clinicians, researchers, and the general community. A taskforce was established with clinical experts in PMS and representatives from the parent community. Experts joined subgroups based on their areas of specialty, including genetics, neurology, neurodevelopment, gastroenterology, primary care, physiatry, nephrology, endocrinology, cardiology, gynecology, and dentistry. Taskforce members convened regularly between 2021 and 2022 and produced specialty-specific guidelines based on iterative feedback and discussion. Taskforce leaders then established consensus within their respective specialty group and harmonized the guidelines. The knowledge gained over the past decade allows for improved guidelines to assess and monitor individuals with PMS. Since there is limited evidence specific to PMS, intervention mostly follows general guidelines for treating individuals with developmental disorders. Significant evidence has been amassed to guide the management of comorbid neuropsychiatric conditions in PMS, albeit mainly from caregiver report and the experience of clinical experts. These updated consensus guidelines on the management of PMS represent an advance for the field and will improve care in the community. Several areas for future research are also highlighted and will contribute to subsequent updates with more refined and specific recommendations as new knowledge accumulates.


Asunto(s)
Trastornos de los Cromosomas , Humanos , Fenotipo , Trastornos de los Cromosomas/diagnóstico , Trastornos de los Cromosomas/epidemiología , Trastornos de los Cromosomas/genética , Deleción Cromosómica , Proteínas del Tejido Nervioso/genética , Cromosomas Humanos Par 22/genética
5.
Eur J Hum Genet ; 31(9): 1017-1022, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37280359

RESUMEN

De novo variants (DNVs) analysis has proven to be a powerful approach to gene discovery in Autism Spectrum Disorder (ASD), which has not yet been shown in a Brazilian ASD cohort. The relevance of inherited rare variants has also been suggested, particularly in oligogenic models. We hypothesized that three-generation analyses of DNVs could provide new insights into the relevance of de novo and inherited variants across generations. To accomplish this goal, we performed whole-exome sequencing of 33 septet families composed of probands, parents, and grandparents (n = 231 individuals) and compared DNV rates (DNVr) between generations and those from two control cohorts. The DNVr in the probands (DNVr = 1.16) was marginally higher than in parents (DNVr = 0.60; p = 0.054), and in controls (DNVr = 0.68; p = 0.035, congenital heart disorder and DNVr = 0.70; p = 0.047, unaffected ASD siblings from Simons Simplex Collection). Moreover, most of the DNVs were found to have paternal origin in both generations (84.6%). Finally, we observed that 40% (6/15) of the DNVs in parents transmitted for probands are in ASD or ASD candidate genes, representing recently emerged risk variants to ASD in their families and suggest ZNF536, MSL2 and HDAC9 as ASD candidate genes. We did not observe an enrichment of risk variants nor sex bias of transmitted variants in the three generations, that can be due to sample size. These results further reinforce the relevance of de novo variants in ASD.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Humanos , Trastorno Autístico/genética , Trastorno del Espectro Autista/genética , Exoma , Predisposición Genética a la Enfermedad , Familia
6.
Am J Med Genet A ; 191(10): 2508-2517, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37353954

RESUMEN

TBCK-related encephalopathy is a rare pediatric neurodegenerative disorder caused by biallelic loss-of-function variants in the TBCK gene. After receiving anecdotal reports of neurologic phenotypes in both human and mouse TBCK heterozygotes, we quantified if TBCK haploinsufficiency causes a phenotype in mice and humans. Using the tbck+/- mouse model, we performed a battery of behavioral assays and mTOR pathway analysis to investigate potential alterations in neurophysiology. We conducted as well a phenome-wide association study (PheWAS) analysis in a large adult biobank to determine the presence of potential phenotypes associated to this variant. The tbck+/- mouse model demonstrates a reduction of exploratory behavior in animals with significant sex and genotype interactions. The concurrent PheWAS analysis of 10,900 unrelated individuals showed that patients with one copy of a TBCK loss-of-function allele had a significantly higher rate of acquired toe and foot deformities, likely indicative of a mild peripheral neuropathy phenotype. This study presents an example of what may be the underappreciated occurrence of mild neurogenic symptoms in heterozygote individuals of recessive neurogenetic syndromes.


Asunto(s)
Encefalopatías , Proteínas Serina-Treonina Quinasas , Humanos , Niño , Animales , Ratones , Proteínas Serina-Treonina Quinasas/genética , Heterocigoto , Síndrome , Encefalopatías/genética , Fenotipo
7.
Nat Commun ; 14(1): 2868, 2023 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-37225711

RESUMEN

Gene-environment interactions are believed to play a role in multifactorial phenotypes, although poorly described mechanistically. Cleft lip/palate (CLP), the most common craniofacial malformation, has been associated with both genetic and environmental factors, with little gene-environment interaction experimentally demonstrated. Here, we study CLP families harbouring CDH1/E-Cadherin variants with incomplete penetrance and we explore the association of pro-inflammatory conditions to CLP. By studying neural crest (NC) from mouse, Xenopus and humans, we show that CLP can be explained by a 2-hit model, where NC migration is impaired by a combination of genetic (CDH1 loss-of-function) and environmental (pro-inflammatory activation) factors, leading to CLP. Finally, using in vivo targeted methylation assays, we demonstrate that CDH1 hypermethylation is the major target of the pro-inflammatory response, and a direct regulator of E-cadherin levels and NC migration. These results unveil a gene-environment interaction during craniofacial development and provide a 2-hit mechanism to explain cleft lip/palate aetiology.


Asunto(s)
Cadherinas , Labio Leporino , Fisura del Paladar , Animales , Humanos , Ratones , Cadherinas/genética , Labio Leporino/genética , Fisura del Paladar/genética , Epigénesis Genética , Interacción Gen-Ambiente , Cresta Neural
8.
Gene ; 871: 147424, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37054903

RESUMEN

Xia-Gibbs syndrome (XGS) is a syndromic form of intellectual disability caused by heterozygous AHDC1 variants, but the pathophysiological mechanisms underlying this syndrome are still unclear. In this manuscript, we describe the development of two different functional models: three induced pluripotent stem cell (iPSC) lines with different loss-of-function (LoF) AHDC1 variants, derived by reprogramming peripheral blood mononuclear cells from XGS patients, and a zebrafish strain with a LoF variant in the ortholog gene (ahdc1) obtained through CRISPR/Cas9-mediated editing. The three iPSC lines showed expression of pluripotency factors (SOX2, SSEA-4, OCT3/4, and NANOG). To verify the capacity of iPSC to differentiate into the three germ layers, we obtained embryoid bodies (EBs), induced their differentiation, and confirmed the mRNA expression of ectodermal, mesodermal, and endodermal markers using the TaqMan hPSC Scorecard. The iPSC lines were also approved for the following quality tests: chromosomal microarray analysis (CMA), mycoplasma testing, and short tandem repeat (STR) DNA profiling. The zebrafish model has an insertion of four base pairs in the ahdc1 gene, is fertile, and breeding between heterozygous and wild-type (WT) animals generated offspring in a genotypic proportion in agreement with Mendelian law. The established iPSC and zebrafish lines were deposited on the hpscreg.eu and zfin.org platforms, respectively. These biological models are the first for XGS and will be used in future studies that investigate the pathophysiology of this syndrome, unraveling its underlying molecular mechanisms.


Asunto(s)
Anomalías Múltiples , Células Madre Pluripotentes Inducidas , Discapacidad Intelectual , Animales , Discapacidad Intelectual/genética , Células Madre Pluripotentes Inducidas/metabolismo , Pez Cebra/genética , Leucocitos Mononucleares , Anomalías Múltiples/genética , Diferenciación Celular/genética , Síndrome
9.
J Med Genet ; 60(11): 1127-1132, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37055165

RESUMEN

Rothmund-Thomson syndrome (RTS) is a rare, heterogeneous autosomal recessive genodermatosis, with poikiloderma as its hallmark. It is classified into two types: type I, with biallelic variants in ANAPC1 and juvenile cataracts, and type II, with biallelic variants in RECQL4, increased cancer risk and no cataracts. We report on six Brazilian probands and two siblings of Swiss/Portuguese ancestry presenting with severe short stature, widespread poikiloderma and congenital ocular anomalies. Genomic and functional analysis revealed compound heterozygosis for a deep intronic splicing variant in trans with loss of function variants in DNA2, with reduction of the protein levels and impaired DNA double-strand break repair. The intronic variant is shared by all patients, as well as the Portuguese father of the European siblings, indicating a probable founder effect. Biallelic variants in DNA2 were previously associated with microcephalic osteodysplastic primordial dwarfism. Although the individuals reported here present a similar growth pattern, the presence of poikiloderma and ocular anomalies is unique. Thus, we have broadened the phenotypical spectrum of DNA2 mutations, incorporating clinical characteristics of RTS. Although a clear genotype-phenotype correlation cannot be definitively established at this moment, we speculate that the residual activity of the splicing variant allele could be responsible for the distinct manifestations of DNA2-related syndromes.

10.
Biochim Biophys Acta Gene Regul Mech ; 1866(1): 194909, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36682583

RESUMEN

Protein kinase M zeta, PKMζ, is a brain enriched kinase with a well characterized role in Long-Term Potentiation (LTP), the activity-dependent strengthening of synapses involved in long-term memory formation. However, little is known about the molecular mechanisms that maintain the tissue specificity of this kinase. Here, we characterized the epigenetic factors, mainly DNA methylation, regulating PKMζ expression in the human brain. The PRKCZ gene has an upstream promoter regulating Protein kinase C ζ (PKCζ), and an internal promoter driving PKMζ expression. A demethylated region, including a canonical CREB binding site, situated at the internal promoter was only observed in human CNS tissues. The induction of site-specific hypermethylation of this region resulted in decreased CREB1 binding and downregulation of PKMζ expression. Noteworthy, CREB binding sites were absent in the upstream promoter of PRKCZ locus, suggesting a specific mechanism for regulating PKMζ expression. These observations were validated using a system of human neuronal differentiation from induced pluripotent stem cells (iPSCs). CREB1 binding at the internal promoter was detected only in differentiated neurons, where PKMζ is expressed. The same epigenetic mechanism in the context of CREB binding site was identified in other genes involved in neuronal differentiation and LTP. Additionally, aberrant DNA hypermethylation at the internal promoter was observed in cases of Alzheimer's disease, correlating with decreased expression of PKMζ in patient brains. Altogether, we present a conserved epigenetic mechanism regulating PKMζ expression and other genes enhanced in the CNS with possible implications in neuronal differentiation and Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Metilación de ADN , Epigénesis Genética , Potenciación a Largo Plazo/fisiología , Encéfalo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética
12.
J Autism Dev Disord ; 2022 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-36502452

RESUMEN

Microcephaly presents heterogeneous genetic etiology linked to several neurodevelopmental disorders (NDD). Copy number variants (CNVs) are a causal mechanism of microcephaly whose investigation is a crucial step for unraveling its molecular basis. Our purpose was to investigate the burden of rare CNVs in microcephalic individuals and to review genes and CNV syndromes associated with microcephaly. We performed chromosomal microarray analysis (CMA) in 185 Brazilian patients with microcephaly and evaluated microcephalic patients carrying < 200 kb CNVs documented in the DECIPHER database. Additionally, we reviewed known genes and CNV syndromes causally linked to microcephaly through the PubMed, OMIM, DECIPHER, and ClinGen databases. Rare clinically relevant CNVs were detected in 39 out of the 185 Brazilian patients investigated by CMA (21%). In 31 among the 60 DECIPHER patients carrying < 200 kb CNVs, at least one known microcephaly gene was observed. Overall, four gene sets implicated in microcephaly were disclosed: known microcephaly genes; genes with supporting evidence of association with microcephaly; known macrocephaly genes; and novel candidates, including OTUD7A, BBC3, CNTN6, and NAA15. In the review, we compiled 957 known microcephaly genes and 58 genomic CNV loci, comprising 13 duplications and 50 deletions, which have already been associated with clinical findings including microcephaly. We reviewed genes and CNV syndromes previously associated with microcephaly, reinforced the high CMA diagnostic yield for this condition, pinpointed novel candidate loci linked to microcephaly deserving further evaluation, and provided a useful resource for future research on the field of neurodevelopment.

13.
Immun Ageing ; 19(1): 57, 2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36384671

RESUMEN

BACKGROUND: Although older adults are at a high risk of severe or critical Covid-19, there are many cases of unvaccinated centenarians who had a silent infection or recovered from mild or moderate Covid-19. We studied three Brazilian supercentenarians, older than 110 years, who survived Covid-19 in 2020 before being vaccinated. RESULTS: Despite their advanced age, humoral immune response analysis showed that these individuals displayed robust levels of IgG and neutralizing antibodies (NAbs) against SARS-CoV-2. Enrichment of plasma proteins and metabolites related to innate immune response and host defense was also observed. None presented autoantibodies (auto-Abs) to type I interferon (IFN). Furthermore, these supercentenarians do not carry rare variants in genes underlying the known inborn errors of immunity, including particular inborn errors of type I IFN. CONCLUSION: These observations suggest that their Covid-19 resilience might be a combination of their genetic background and their innate and adaptive immunity.

14.
Front Immunol ; 13: 975918, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36389712

RESUMEN

Background: Although aging correlates with a worse prognosis for Covid-19, super elderly still unvaccinated individuals presenting mild or no symptoms have been reported worldwide. Most of the reported genetic variants responsible for increased disease susceptibility are associated with immune response, involving type I IFN immunity and modulation; HLA cluster genes; inflammasome activation; genes of interleukins; and chemokines receptors. On the other hand, little is known about the resistance mechanisms against SARS-CoV-2 infection. Here, we addressed polymorphisms in the MHC region associated with Covid-19 outcome in super elderly resilient patients as compared to younger patients with a severe outcome. Methods: SARS-CoV-2 infection was confirmed by RT-PCR test. Aiming to identify candidate genes associated with host resistance, we investigated 87 individuals older than 90 years who recovered from Covid-19 with mild symptoms or who remained asymptomatic following positive test for SARS-CoV-2 as compared to 55 individuals younger than 60 years who had a severe disease or died due to Covid-19, as well as to the general elderly population from the same city. Whole-exome sequencing and an in-depth analysis of the MHC region was performed. All samples were collected in early 2020 and before the local vaccination programs started. Results: We found that the resilient super elderly group displayed a higher frequency of some missense variants in the MUC22 gene (a member of the mucins' family) as one of the strongest signals in the MHC region as compared to the severe Covid-19 group and the general elderly control population. For example, the missense variant rs62399430 at MUC22 is two times more frequent among the resilient super elderly (p = 0.00002, OR = 2.24). Conclusion: Since the pro-inflammatory basal state in the elderly may enhance the susceptibility to severe Covid-19, we hypothesized that MUC22 might play an important protective role against severe Covid-19, by reducing overactive immune responses in the senior population.


Asunto(s)
COVID-19 , Anciano , Humanos , Brasil/epidemiología , COVID-19/epidemiología , COVID-19/genética , Genes MHC Clase II , Antígenos HLA-A , SARS-CoV-2/genética
15.
Epigenetics ; 17(13): 2278-2295, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36047706

RESUMEN

Non-syndromic cleft lip with or without cleft palate (NSCLP), the most common human craniofacial malformation, is a complex disorder given its genetic heterogeneity and multifactorial component revealed by genetic, epidemiological, and epigenetic findings. Epigenetic variations associated with NSCLP have been identified; however, functional investigation has been limited. Here, we combined a reanalysis of NSCLP methylome data with genetic analysis and used both in vitro and in vivo approaches to dissect the functional effects of epigenetic changes. We found a region in mir152 that is frequently hypomethylated in NSCLP cohorts (21-26%), leading to mir152 overexpression. mir152 overexpression in human neural crest cells led to downregulation of spliceosomal, ribosomal, and adherens junction genes. In vivo analysis using zebrafish embryos revealed that mir152 upregulation leads to craniofacial cartilage impairment. Also, we suggest that zebrafish embryonic hypoxia leads to mir152 upregulation combined with mir152 hypomethylation and also analogous palatal alterations. We therefore propose that mir152 hypomethylation, potentially induced by hypoxia in early development, is a novel and frequent predisposing factor to NSCLP.


Asunto(s)
Labio Leporino , Fisura del Paladar , MicroARNs , Animales , Humanos , Labio Leporino/genética , Fisura del Paladar/genética , Pez Cebra/genética , Predisposición Genética a la Enfermedad , Metilación de ADN , Hipoxia/genética , Polimorfismo de Nucleótido Simple , MicroARNs/genética
16.
Nat Genet ; 54(9): 1320-1331, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35982160

RESUMEN

Some individuals with autism spectrum disorder (ASD) carry functional mutations rarely observed in the general population. We explored the genes disrupted by these variants from joint analysis of protein-truncating variants (PTVs), missense variants and copy number variants (CNVs) in a cohort of 63,237 individuals. We discovered 72 genes associated with ASD at false discovery rate (FDR) ≤ 0.001 (185 at FDR ≤ 0.05). De novo PTVs, damaging missense variants and CNVs represented 57.5%, 21.1% and 8.44% of association evidence, while CNVs conferred greatest relative risk. Meta-analysis with cohorts ascertained for developmental delay (DD) (n = 91,605) yielded 373 genes associated with ASD/DD at FDR ≤ 0.001 (664 at FDR ≤ 0.05), some of which differed in relative frequency of mutation between ASD and DD cohorts. The DD-associated genes were enriched in transcriptomes of progenitor and immature neuronal cells, whereas genes showing stronger evidence in ASD were more enriched in maturing neurons and overlapped with schizophrenia-associated genes, emphasizing that these neuropsychiatric disorders may share common pathways to risk.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Trastorno del Espectro Autista/genética , Trastorno Autístico/genética , Variaciones en el Número de Copia de ADN/genética , Predisposición Genética a la Enfermedad , Humanos , Mutación
17.
Transl Psychiatry ; 12(1): 234, 2022 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-35668055

RESUMEN

Oligogenic inheritance of autism spectrum disorder (ASD) has been supported by several studies. However, little is known about how the risk variants interact and converge on causative neurobiological pathways. We identified in an ASD proband deleterious compound heterozygous missense variants in the Reelin (RELN) gene, and a de novo splicing variant in the Cav3.2 calcium channel (CACNA1H) gene. Here, by using iPSC-derived neural progenitor cells (NPCs) and a heterologous expression system, we show that the variant in Cav3.2 leads to increased calcium influx into cells, which overactivates mTORC1 pathway and, consequently, further exacerbates the impairment of Reelin signaling. Also, we show that Cav3.2/mTORC1 overactivation induces proliferation of NPCs and that both mutant Cav3.2 and Reelin cause abnormal migration of these cells. Finally, analysis of the sequencing data from two ASD cohorts-a Brazilian cohort of 861 samples, 291 with ASD; the MSSNG cohort of 11,181 samples, 5,102 with ASD-revealed that the co-occurrence of risk variants in both alleles of Reelin pathway genes and in one allele of calcium channel genes confer significant liability for ASD. Our results support the notion that genes with co-occurring deleterious variants tend to have interconnected pathways underlying oligogenic forms of ASD.


Asunto(s)
Trastorno del Espectro Autista , Canales de Calcio Tipo T , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/metabolismo , Canales de Calcio/genética , Canales de Calcio Tipo T/genética , Predisposición Genética a la Enfermedad , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Herencia Multifactorial
18.
Mol Psychiatry ; 27(8): 3328-3342, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35501408

RESUMEN

Autism Spectrum Disorder (ASD) is characterized by impaired social communication, restricted interests, and repetitive and stereotyped behaviors. The TRPC6 (transient receptor potential channel 6) represents an ASD candidate gene under an oligogenic/multifactorial model based on the initial description and cellular characterization of an individual with ASD bearing a de novo heterozygous mutation disrupting TRPC6, together with the enrichment of disruptive TRPC6 variants in ASD cases as compared to controls. Here, we perform a clinical re-evaluation of the initial non-verbal patient, and also present eight newly reported individuals ascertained for ASD and bearing predicted loss-of-function mutations in TRPC6. In order to understand the consequences of mutations in TRPC6 on nervous system function, we used the fruit fly, Drosophila melanogaster, to show that null mutations in transient receptor gamma (trpγ; the fly gene most similar to TRPC6), cause a number of behavioral defects that mirror features seen in ASD patients, including deficits in social interactions (based on courtship behavior), impaired sleep homeostasis (without affecting the circadian control of sleep), hyperactivity in both young and old flies, and defects in learning and memory. Some defects, most notably in sleep, differed in severity between males and females and became normal with age. Interestingly, hyperforin, a TRPC6 agonist and the primary active component of the St. John's wort antidepressant, attenuated many of the deficits expressed by trpγ mutant flies. In summary, our results provide further evidence that the TRPC6 gene is a risk factor for ASD. In addition, they show that the behavioral defects caused by mutations in TRPC6 can be modeled in Drosophila, thereby establishing a paradigm to examine the impact of mutations in other candidate genes.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Animales , Masculino , Femenino , Trastorno Autístico/genética , Canal Catiónico TRPC6/genética , Trastorno del Espectro Autista/genética , Drosophila , Drosophila melanogaster/genética , Mutación/genética
19.
Front Neurosci ; 16: 828646, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35360153

RESUMEN

Prenatal exposure to maternal immune activation (MIA) has been suggested to increase the probability of autism spectrum disorder (ASD). Recent evidence from animal studies indicates a key role for interleukin-17a (IL-17a) in promoting MIA-induced behavioral and brain abnormalities reminiscent of ASD. However, it is still unclear how IL-17a acts on the human developing brain and the cell types directly affected by IL-17a signaling. In this study, we used iPSC-derived neural progenitor cells (NPCs) from individuals with ASD of known and unknown genetic cause as well as from neurotypical controls to examine the effects of exogenous IL-17a on NPC proliferation, migration and neuronal differentiation, and whether IL-17a and genetic risk factors for ASD interact exacerbating alterations in NPC function. We observed that ASD and control NPCs endogenously express IL-17a receptor (IL17RA), and that IL-17a/IL17RA activation modulates downstream ERK1/2 and mTORC1 signaling pathways. Exogenous IL-17a did not induce abnormal proliferation and migration of ASD and control NPCs but, on the other hand, it significantly increased the expression of synaptic (Synaptophysin-1, Synapsin-1) and neuronal polarity (MAP2) proteins in these cells. Also, as we observed that ASD and control NPCs exhibited similar responses to exogenous IL-17a, it is possible that a more inflammatory environment containing other immune molecules besides IL-17a may be needed to trigger gene-environment interactions during neurodevelopment. In conclusion, our results suggest that exogenous IL-17a positively regulates the neuronal differentiation of human NPCs, which may disturb normal neuronal and synaptic development and contribute to MIA-related changes in brain function and behavior.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...