Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Crit Care Med ; 50(7): e630-e637, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35132021

RESUMEN

OBJECTIVES: Lung damage during mechanical ventilation involves lung volume and alveolar water content, and lung ultrasound (LUS) and electrical impedance tomography changes are related to these variables. We investigated whether these techniques may detect any signal modification during the development of ventilator-induced lung injury (VILI). DESIGN: Experimental animal study. SETTING: Experimental Department of a University Hospital. SUBJECTS: Forty-two female pigs (24.2 ± 2.0 kg). INTERVENTIONS: The animals were randomized into three groups (n = 14): high tidal volume (TV) (mean TV, 803.0 ± 121.7 mL), high respiratory rate (RR) (mean RR, 40.3 ± 1.1 beats/min), and high positive-end-expiratory pressure (PEEP) (mean PEEP, 24.0 ± 1.1 cm H2O). The study lasted 48 hours. At baseline and at 30 minutes, and subsequently every 6 hours, we recorded extravascular lung water, end-expiratory lung volume, lung strain, respiratory mechanics, hemodynamics, and gas exchange. At the same time-point, end-expiratory impedance was recorded relatively to the baseline. LUS was assessed every 12 hours in 12 fields, each scoring from 0 (presence of A-lines) to 3 (consolidation). MEASUREMENTS AND MAIN RESULTS: In a multiple regression model, the ratio between extravascular lung water and end-expiratory lung volume was significantly associated with the LUS total score (p < 0.002; adjusted R2, 0.21). The variables independently associated with the end-expiratory difference in lung impedance were lung strain (p < 0.001; adjusted R2, 0.18) and extravascular lung water (p < 0.001; adjusted R2, 0.11). CONCLUSIONS: Data suggest as follows. First, what determines the LUS score is the ratio between water and gas and not water alone. Therefore, caution is needed when an improvement of LUS score follows a variation of the lung gas content, as after a PEEP increase. Second, what determines the end-expiratory difference in lung impedance is the strain level that may disrupt the intercellular junction, therefore altering lung impedance. In addition, the increase in extravascular lung water during VILI development contributed to the observed decrease in impedance.


Asunto(s)
Lesión Pulmonar , Lesión Pulmonar Inducida por Ventilación Mecánica , Animales , Impedancia Eléctrica , Femenino , Humanos , Pulmón/diagnóstico por imagen , Lesión Pulmonar/diagnóstico por imagen , Lesión Pulmonar/etiología , Respiración con Presión Positiva/métodos , Porcinos , Volumen de Ventilación Pulmonar , Tomografía Computarizada por Rayos X , Lesión Pulmonar Inducida por Ventilación Mecánica/diagnóstico por imagen
2.
Front Physiol ; 12: 743153, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34588999

RESUMEN

Background: Ventilator-induced lung injury (VILI) via respiratory mechanics is deeply interwoven with hemodynamic, kidney and fluid/electrolyte changes. We aimed to assess the role of positive fluid balance in the framework of ventilation-induced lung injury. Methods: Post-hoc analysis of seventy-eight pigs invasively ventilated for 48 h with mechanical power ranging from 18 to 137 J/min and divided into two groups: high vs. low pleural pressure (10.0 ± 2.8 vs. 4.4 ± 1.5 cmH2O; p < 0.01). Respiratory mechanics, hemodynamics, fluid, sodium and osmotic balances, were assessed at 0, 6, 12, 24, 48 h. Sodium distribution between intracellular, extracellular and non-osmotic sodium storage compartments was estimated assuming osmotic equilibrium. Lung weight, wet-to-dry ratios of lung, kidney, liver, bowel and muscle were measured at the end of the experiment. Results: High pleural pressure group had significant higher cardiac output (2.96 ± 0.92 vs. 3.41 ± 1.68 L/min; p < 0.01), use of norepinephrine/epinephrine (1.76 ± 3.31 vs. 5.79 ± 9.69 mcg/kg; p < 0.01) and total fluid infusions (3.06 ± 2.32 vs. 4.04 ± 3.04 L; p < 0.01). This hemodynamic status was associated with significantly increased sodium and fluid retention (at 48 h, respectively, 601.3 ± 334.7 vs. 1073.2 ± 525.9 mmol, p < 0.01; and 2.99 ± 2.54 vs. 6.66 ± 3.87 L, p < 0.01). Ten percent of the infused sodium was stored in an osmotically inactive compartment. Increasing fluid and sodium retention was positively associated with lung-weight (R 2 = 0.43, p < 0.01; R 2 = 0.48, p < 0.01) and with wet-to-dry ratio of the lungs (R 2 = 0.14, p < 0.01; R 2 = 0.18, p < 0.01) and kidneys (R 2 = 0.11, p = 0.02; R 2 = 0.12, p = 0.01). Conclusion: Increased mechanical power and pleural pressures dictated an increase in hemodynamic support resulting in proportionally increased sodium and fluid retention and pulmonary edema.

3.
Front Physiol ; 12: 682877, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34447316

RESUMEN

Inflammation and oxidative stress characterize sepsis and determine its severity. In this study, we investigated the relationship between albumin oxidation and sepsis severity in a selected cohort of patients from the Albumin Italian Outcome Study (ALBIOS). A retrospective analysis was conducted on the oxidation forms of human albumin [human mercapto-albumin (HMA), human non-mercapto-albumin form 1 (HNA1) and human non-mercapto-albumin form 2 (HNA2)] in 60 patients with severe sepsis or septic shock and 21 healthy controls. The sepsis patients were randomized (1:1) to treatment with 20% albumin and crystalloid solution or crystalloid solution alone. The albumin oxidation forms were measured at day 1 and day 7. To assess the albumin oxidation forms as a function of oxidative stress, the 60 sepsis patients, regardless of the treatment, were grouped based on baseline sequential organ failure assessment (SOFA) score as surrogate marker of oxidative stress. At day 1, septic patients had significantly lower levels of HMA and higher levels of HNA1 and HNA2 than healthy controls. HMA and HNA1 concentrations were similar in patients treated with albumin or crystalloids at day 1, while HNA2 concentration was significantly greater in albumin-treated patients (p < 0.001). On day 7, HMA was significantly higher in albumin-treated patients, while HNA2 significantly increased only in the crystalloids-treated group, reaching values comparable with the albumin group. When pooling the septic patients regardless of treatment, albumin oxidation was similar across all SOFA groups at day 1, but at day 7 HMA was lower at higher SOFA scores. Mortality rate was independently associated with albumin oxidation levels measured at day 7 (HMA log-rank = 0.027 and HNA2 log-rank = 0.002), irrespective of treatment group. In adjusted regression analyses for 90-day mortality, this effect remained significant for HMA and HNA2. Our data suggest that the oxidation status of albumin is modified according to the time of exposure to oxidative stress (differences between day 1 and day 7). After 7 days of treatment, lower SOFA scores correlate with higher albumin antioxidant capacity. The trend toward a positive effect of albumin treatment, while not statistically significant, warrants further investigation.

4.
Am J Respir Crit Care Med ; 203(3): 318-327, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-32813989

RESUMEN

Rationale: Understanding the physiology of CO2 stores mobilization is a prerequisite for intermittent extracorporeal CO2 removal (ECCO2R) in patients with chronic hypercapnia.Objectives: To describe the dynamics of CO2 stores.Methods: Fifteen pigs (61.7 ± 4.3 kg) were randomized to 48 hours of hyperventilation (group "Hyper," n = 4); 48 hours of hypoventilation (group "Hypo," n = 4); 24 hours of hypoventilation plus 24 hours of normoventilation (group "Hypo-Baseline," n = 4); or 24 hours of hypoventilation plus 24 hours of hypoventilation plus ECCO2R (group "Hypo-ECCO2R," n = 3). Forty-eight hours after randomization, the current [Formula: see text]e was reduced by 50% in every pig.Measurements and Main Results: We evaluated [Formula: see text]co2, [Formula: see text]o2, and metabolic [Formula: see text]co2 ([Formula: see text]o2 times the metabolic respiratory quotient). Changes in the CO2 stores were calculated as [Formula: see text]co2 - metabolic V̇co2. After 48 hours, the CO2 stores decreased by 0.77 ± 0.17 l kg-1 in group Hyper and increased by 0.32 ± 0.27 l kg-1 in group Hypo (P = 0.030). In group Hypo-Baseline, they increased by 0.08 ± 0.19 l kg-1, whereas in group Hypo-ECCO2R, they decreased by 0.32 ± 0.24 l kg-1 (P = 0.197). In the second 24-hour period, in groups Hypo-Baseline and Hypo-ECCO2R, the CO2 stores decreased by 0.15 ± 0.09 l kg-1 and 0.51 ± 0.06 l kg-1, respectively (P = 0.002). At the end of the experiment, the 50% reduction of [Formula: see text]e caused a PaCO2 rise of 9.3 ± 1.1, 32.0 ± 5.0, 16.9 ± 1.2, and 11.7 ± 2.0 mm Hg h-1 in groups Hyper, Hypo, Hypo-Baseline, and Hypo-ECCO2R, respectively (P < 0.001). The PaCO2 rise was inversely related to the previous CO2 stores mobilization (P < 0.001).Conclusions: CO2 from body stores can be mobilized over 48 hours without reaching a steady state. This provides a physiological rationale for intermittent ECCO2R in patients with chronic hypercapnia.


Asunto(s)
Equilibrio Ácido-Base/fisiología , Dióxido de Carbono/metabolismo , Enfermedad Crónica/terapia , Hipercapnia/terapia , Enfermedad Pulmonar Obstructiva Crónica/complicaciones , Enfermedad Pulmonar Obstructiva Crónica/terapia , Intercambio Gaseoso Pulmonar/fisiología , Animales , Oxigenación por Membrana Extracorpórea , Humanos , Modelos Animales , Porcinos
5.
Shock ; 54(5): 675-680, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32941388

RESUMEN

OBJECTIVE: To investigate the behavior of pentraxin-3 (PTX3), troponin T (hsTnT), N-terminal pro-B type Natriuretic Peptide (NT-proBNP) in sepsis and their relationships with sepsis severity and oxygen transport/utilization impairment. DESIGN: Retrospective analysis of PTX3, hsTnT, NT-proBNP levels at day 1, 2, and 7 after admission in the intensive care unit in a subset of the Albumin Italian Outcome Sepsis database. SETTING: Forty Italian intensive care units. PATIENTS: Nine hundred fifty-eight septic patients enrolled in the randomized clinical trial comparing albumin replacement plus crystalloids and crystalloids alone. INTERVENTIONS: The patients were divided into sextiles of lactate (marker of severity), ScvO2 (marker of oxygen transport), and fluid balance (marker of therapeutic strategy). MEASUREMENTS AND MAIN RESULTS: PTX3 and hsTnT were remarkably similar in the two treatment arms, while NT-proBNP was almost double in the albumin treatment group. However, as the distribution of all these biomarkers was similar between control and treatment arms, for the sake of clarity, we analyzed the patients as a single cohort. PTX3 (71.8 [32.9-186.3] ng/mL), hsTnT (50.4 [21.6-133.6] ng/L), and NT-proBNP (4,393 [1,313-13,837] ng/L) were abnormally elevated in 100%, 84.5%, 93.4% of the 953 patients and all decreased from day 1 to day 7. PTX3 monotonically increased with increasing lactate levels. The hsTnT levels were significantly higher when ScvO2 levels were abnormally low (< 70%), suggesting impaired oxygen transport compared with higher ScvO2 levels, suggesting impaired oxygen utilization. NT-proBNP was higher with higher lactate and fluid balance. At ScvO2 levels < 70%, the NT-proBNP was higher than at higher ScvO2 levels. However, even with higher ScvO2, the NT-proBNP was remarkably elevated, suggesting volume expansion. Increased level of NT-proBNP showed the strongest association with 90-day mortality. CONCLUSIONS: The selected biomarkers seem related to different mechanisms during sepsis: PTX3 to sepsis severity, hsTnT to impaired oxygen transport, NT-proBNP to sepsis severity, oxygen transport, and aggressive fluid strategy.


Asunto(s)
Proteína C-Reactiva/metabolismo , Bases de Datos Factuales , Unidades de Cuidados Intensivos , Péptido Natriurético Encefálico/sangre , Fragmentos de Péptidos/sangre , Sepsis/sangre , Componente Amiloide P Sérico/metabolismo , Troponina T/sangre , Adulto , Anciano , Albúminas/administración & dosificación , Soluciones Cristaloides/administración & dosificación , Femenino , Humanos , Italia , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Sepsis/tratamiento farmacológico , Índice de Severidad de la Enfermedad
6.
Crit Care ; 24(1): 417, 2020 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-32653011

RESUMEN

BACKGROUND: Mechanical power (MP) is the energy delivered to the respiratory system over time during mechanical ventilation. Our aim was to compare the currently available methods to calculate MP during volume- and pressure-controlled ventilation, comparing different equations with the geometric reference method, to understand whether the easier to use surrogate formulas were suitable for the everyday clinical practice. This would warrant a more widespread use of mechanical power to promote lung protection. METHODS: Forty respiratory failure patients, sedated and paralyzed for clinical reasons, were ventilated in volume-controlled ventilation, at two inspiratory flows (30 and 60 L/min), and pressure-controlled ventilation with a similar tidal volume. Mechanical power was computed both with the geometric method, as the area between the inspiratory limb of the airway pressure and the volume, and with two algebraic methods, a comprehensive and a surrogate formula. RESULTS: The bias between the MP computed by the geometric method and by the comprehensive algebraic method during volume-controlled ventilation was respectively 0.053 (0.77, - 0.81) J/min and - 0.4 (0.70, - 1.50) J/min at low and high flows (r2 = 0.96 and 0.97, p < 0.01). The MP measured and computed by the two methods were highly correlated (r2 = 0.95 and 0.94, p < 0.01) with a bias of - 0.0074 (0.91, - 0.93) and - 1.0 (0.45, - 2.52) J/min at high-low flows. During pressure-controlled ventilation, the bias between the MP measured and the one calculated with the comprehensive and simplified methods was correlated (r2 = 0.81, 0.94, p < 0.01) with mean differences of - 0.001 (2.05, - 2.05) and - 0.81 (2.11, - 0.48) J/min. CONCLUSIONS: Both for volume-controlled and pressure-controlled ventilation, the surrogate formulas approximate the reference method well enough to warrant their use in the everyday clinical practice. Given that these formulas require nothing more than the variables already displayed by the intensive care ventilator, a more widespread use of mechanical power should be encouraged to promote lung protection against ventilator-induced lung injury.


Asunto(s)
Fenómenos Mecánicos , Presión , Respiración Artificial/clasificación , Femenino , Humanos , Pulmón/fisiopatología , Masculino , Persona de Mediana Edad , Respiración Artificial/métodos , Respiración Artificial/normas , Insuficiencia Respiratoria/fisiopatología , Insuficiencia Respiratoria/terapia , Pesos y Medidas/instrumentación
7.
Anesthesiology ; 132(5): 1126-1137, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32032095

RESUMEN

BACKGROUND: Excessive tidal volume, respiratory rate, and positive end-expiratory pressure (PEEP) are all potential causes of ventilator-induced lung injury, and all contribute to a single variable: the mechanical power. The authors aimed to determine whether high tidal volume or high respiratory rate or high PEEP at iso-mechanical power produce similar or different ventilator-induced lung injury. METHODS: Three ventilatory strategies-high tidal volume (twice baseline functional residual capacity), high respiratory rate (40 bpm), and high PEEP (25 cm H2O)-were each applied at two levels of mechanical power (15 and 30 J/min) for 48 h in six groups of seven healthy female piglets (weight: 24.2 ± 2.0 kg, mean ± SD). RESULTS: At iso-mechanical power, the high tidal volume groups immediately and sharply increased plateau, driving pressure, stress, and strain, which all further deteriorated with time. In high respiratory rate groups, they changed minimally at the beginning, but steadily increased during the 48 h. In contrast, after a sudden huge increase, they decreased with time in the high PEEP groups. End-experiment specific lung elastance was 6.5 ± 1.7 cm H2O in high tidal volume groups, 10.1 ± 3.9 cm H2O in high respiratory rate groups, and 4.5 ± 0.9 cm H2O in high PEEP groups. Functional residual capacity decreased and extravascular lung water increased similarly in these three categories. Lung weight, wet-to-dry ratio, and histologic scores were similar, regardless of ventilatory strategies and power levels. However, the alveolar edema score was higher in the low power groups. High PEEP had the greatest impact on hemodynamics, leading to increased need for fluids. Adverse events (early mortality and pneumothorax) also occurred more frequently in the high PEEP groups. CONCLUSIONS: Different ventilatory strategies, delivered at iso-power, led to similar anatomical lung injury. The different systemic consequences of high PEEP underline that ventilator-induced lung injury must be evaluated in the context of the whole body.


Asunto(s)
Modelos Animales , Respiración con Presión Positiva/efectos adversos , Mecánica Respiratoria/fisiología , Volumen de Ventilación Pulmonar/fisiología , Lesión Pulmonar Inducida por Ventilación Mecánica/fisiopatología , Animales , Animales Recién Nacidos , Femenino , Respiración con Presión Positiva/métodos , Porcinos , Lesión Pulmonar Inducida por Ventilación Mecánica/etiología
8.
J Appl Physiol (1985) ; 128(1): 78-86, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31774352

RESUMEN

Esophageal pressure has been suggested as adequate surrogate of the pleural pressure. We investigate after lung surgery the determinants of the esophageal and intrathoracic pressures and their differences. The esophageal pressure (through esophageal balloon) and the intrathoracic/pleural pressure (through the chest tube on the surgery side) were measured after surgery in 28 patients immediately after lobectomy or wedge resection. Measurements were made in the nondependent lateral position (without or with ventilation of the operated lung) and in the supine position. In the lateral position with the nondependent lung, collapsed or ventilated, the differences between esophageal and pleural pressure amounted to 4.4 ± 1.6 and 5.1 ± 1.7 cmH2O. In the supine position, the difference amounted to 7.3 ± 2.8 cmH2O. In the supine position, the estimated compressive forces on the mediastinum were 10.5 ± 3.1 cmH2O and on the iso-gravitational pleural plane 3.2 ± 1.8 cmH2O. A simple model describing the roles of chest, lung, and pneumothorax volume matching on the pleural pressure genesis was developed; modeled pleural pressure = 1.0057 × measured pleural pressure + 0.6592 (r2 = 0.8). Whatever the position and the ventilator settings, the esophageal pressure changed in a 1:1 ratio with the changes in pleural pressure. Consequently, chest wall elastance (Ecw) measured by intrathoracic (Ecw = ΔPpl/tidal volume) or esophageal pressure (Ecw = ΔPes/tidal volume) was identical in all the positions we tested. We conclude that esophageal and pleural pressures may be largely different depending on body position (gravitational forces) and lung-chest wall volume matching. Their changes, however, are identical.NEW & NOTEWORTHY Esophageal and pleural pressure changes occur at a 1:1 ratio, fully justifying the use of esophageal pressure to compute the chest wall elastance and the changes in pleural pressure and in lung stress. The absolute value of esophageal and pleural pressures may be largely different, depending on the body position (gravitational forces) and the lung-chest wall volume matching. Therefore, the absolute value of esophageal pressure should not be used as a surrogate of pleural pressure.


Asunto(s)
Esófago/fisiología , Rendimiento Pulmonar/fisiología , Pulmón/fisiología , Cavidad Pleural/fisiología , Respiración con Presión Positiva/métodos , Anciano , Femenino , Humanos , Mediciones del Volumen Pulmonar , Masculino , Postura , Presión , Mecánica Respiratoria
9.
Intensive Care Med Exp ; 7(1): 61, 2019 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-31773328

RESUMEN

BACKGROUND: Mechanical power is a summary variable including all the components which can possibly cause VILI (pressures, volume, flow, respiratory rate). Since the complexity of its mathematical computation is one of the major factors that delay its clinical use, we propose here a simple and easy to remember equation to estimate mechanical power under volume-controlled ventilation: [Formula: see text] where the mechanical power is expressed in Joules/minute, the minute ventilation (VE) in liters/minute, the inspiratory flow (F) in liters/minute, and peak pressure and positive end-expiratory pressure (PEEP) in centimeter of water. All the components of this equation are continuously displayed by any ventilator under volume-controlled ventilation without the need for clinician intervention. To test the accuracy of this new equation, we compared it with the reference formula of mechanical power that we proposed for volume-controlled ventilation in the past. The comparisons were made in a cohort of mechanically ventilated pigs (485 observations) and in a cohort of ICU patients (265 observations). RESULTS: Both in pigs and in ICU patients, the correlation between our equation and the reference one was close to the identity. Indeed, the R2 ranged from 0.97 to 0.99 and the Bland-Altman showed small biases (ranging from + 0.35 to - 0.53 J/min) and proportional errors (ranging from + 0.02 to - 0.05). CONCLUSIONS: Our new equation of mechanical power for volume-controlled ventilation represents a simple and accurate alternative to the more complex ones available to date. This equation does not need any clinical intervention on the ventilator (such as an inspiratory hold) and could be easily implemented in the software of any ventilator in volume-controlled mode. This would allow the clinician to have an estimation of mechanical power at a simple glance and thus increase the clinical consciousness of this variable which is still far from being used at the bedside. Our equation carries the same limitations of all other formulas of mechanical power, the most important of which, as far as it concerns VILI prevention, are the lack of normalization and its application to the whole respiratory system (including the chest wall) and not only to the lung parenchyma.

10.
Expert Rev Respir Med ; 13(8): 737-746, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31274034

RESUMEN

Introduction: Transpulmonary pressure (PL) is the pressure distending the lung. This pressure equals the stress which develops into the parenchyma at each insufflation and it depends, for a given airway pressure, on the relationship between the lung and the chest wall elastance: a given stress is associated to a given strain, therefor PL is strictly related to ventilator-induced lung injury (VILI). Insufficient knowledge and increased workload account for its limited use in the clinical setting: indeed, the current recommendations for protective ventilation still rely only on the pressures applied to the respiratory system in total (Plateau pressure), without a direct measurement of the real lung stress. Areas covered: We reviewed the significance, the assessment, the application and the limits of transpulmonary pressure in the clinical setting. Expert opinion: Transpulmonary pressure represents a physiologically sound safety limit for mechanical ventilation that should be measured and targeted at least in the most severe ARDS patients. Targeting transpulmonary pressure means 'personalizing' the ventilatory settings.


Asunto(s)
Lesión Pulmonar Inducida por Ventilación Mecánica/prevención & control , Humanos , Respiración Artificial
11.
Am J Respir Crit Care Med ; 200(5): 582-589, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-30985210

RESUMEN

Rationale: Hyperlactatemia in sepsis may derive from a prevalent impairment of oxygen supply/demand and/or oxygen use. Discriminating between these two mechanisms may be relevant for the early fluid resuscitation strategy.Objectives: To understand the relationship among central venous oxygen saturation (ScvO2), lactate, and base excess to better determine the origin of lactate.Methods: This was a post hoc analysis of baseline variables of 1,741 patients with sepsis enrolled in the multicenter trial ALBIOS (Albumin Italian Outcome Sepsis). Variables were analyzed as a function of sextiles of lactate concentration and sextiles of ScvO2. We defined the "alactic base excess," as the sum of lactate and standard base excess.Measurements and Main Results: Organ dysfunction severity scores, physiologic variables of hepatic, metabolic, cardiac, and renal function, and 90-day mortality were measured. ScvO2 was lower than 70% only in 35% of patients. Mortality, organ dysfunction scores, and lactate were highest in the first and sixth sextiles of ScvO2. Although lactate level related strongly to mortality, it was associated with acidemia only when kidney function was impaired (creatinine >2 mg/dl), as rapidly detected by a negative alactic base excess. In contrast, positive values of alactic base excess were associated with a relative reduction of fluid balance.Conclusions: Hyperlactatemia is powerfully correlated with severity of sepsis and, in established sepsis, is caused more frequently by impaired tissue oxygen use, rather than by impaired oxygen transport. Concomitant acidemia was only observed in the presence of renal dysfunction, as rapidly detected by alactic base excess. The current strategy of fluid resuscitation could be modified according to the origin of excess lactate.


Asunto(s)
Acidosis Láctica/fisiopatología , Acidosis Láctica/terapia , Biomarcadores/análisis , Fluidoterapia/métodos , Consumo de Oxígeno/fisiología , Sepsis/fisiopatología , Sepsis/terapia , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores/sangre , Femenino , Humanos , Italia , Masculino , Persona de Mediana Edad
12.
Crit Care Med ; 47(1): 33-40, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30239381

RESUMEN

OBJECTIVES: Minimally invasive extracorporeal CO2 removal is an accepted supportive treatment in chronic obstructive pulmonary disease patients. Conversely, the potential of such technique in treating acute respiratory distress syndrome patients remains to be investigated. The aim of this study was: 1) to quantify membrane lung CO2 removal (VCO2ML) under different conditions and 2) to quantify the natural lung CO2 removal (VCO2NL) and to what extent mechanical ventilation can be reduced while maintaining total expired CO2 (VCO2tot = VCO2ML + VCO2NL) and arterial PCO2 constant. DESIGN: Experimental animal study. SETTING: Department of Experimental Animal Medicine, University of Göttingen, Germany. SUBJECTS: Eight healthy pigs (57.7 ± 5 kg). INTERVENTIONS: The animals were sedated, ventilated, and connected to the artificial lung system (surface 1.8 m, polymethylpentene membrane, filling volume 125 mL) through a 13F catheter. VCO2ML was measured under different combinations of inflow PCO2 (38.9 ± 3.3, 65 ± 5.7, and 89.9 ± 12.9 mm Hg), extracorporeal blood flow (100, 200, 300, and 400 mL/min), and gas flow (4, 6, and 12 L/min). At each setting, we measured VCO2ML, VCO2NL, lung mechanics, and blood gases. MEASUREMENTS AND MAIN RESULTS: VCO2ML increased linearly with extracorporeal blood flow and inflow PCO2 but was not affected by gas flow. The outflow PCO2 was similar regardless of inflow PCO2 and extracorporeal blood flow, suggesting that VCO2ML was maximally exploited in each experimental condition. Mechanical ventilation could be reduced by up to 80-90% while maintaining a constant PaCO2. CONCLUSIONS: Minimally invasive extracorporeal CO2 removal removes a relevant amount of CO2 thus allowing mechanical ventilation to be significantly reduced depending on extracorporeal blood flow and inflow PCO2. Extracorporeal CO2 removal may provide the physiologic prerequisites for controlling ventilator-induced lung injury.


Asunto(s)
Oxigenación por Membrana Extracorpórea/métodos , Animales , Dióxido de Carbono/sangre , Cateterismo Venoso Central , Modelos Animales , Insuficiencia Respiratoria/terapia , Porcinos , Desconexión del Ventilador
14.
Crit Care ; 22(1): 237, 2018 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-30261898

RESUMEN

BACKGROUND: A reanalysis of the ALBIOS trial suggested that patients with septic shock - defined by vasopressor-dependent hypotension in the presence of severe sepsis (Shock-2) - had a survival benefit when treated with albumin. The new septic shock definition (Shock-3) added the criterion of a lactate threshold of 2 mmol/L. We investigated how the populations defined according to Shock-2 and Shock-3 differed and whether the albumin benefit would be confirmed. METHODS: This is a retrospective analysis of the ALBIOS study, a randomized controlled study conducted between 2008 and 2012 in 100 intensive care units in Italy comparing the administration of 20% albumin and crystalloids versus crystalloids alone in patients with severe sepsis or septic shock. We analyzed data from 1741 patients from ALBIOS with serum lactate measurement available at baseline. We compared group size, physiological variables and 90-day mortality between patients defined by Shock-2 and Shock-3 and between the albumin and crystalloid treatment groups. RESULTS: We compared the Shock-2 and the Shock-3 definitions and the albumin and crystalloid treatment groups in terms of group size and physiological, laboratory and outcome variables. The Shock-3 definition reduced the population with shock by 34%. The Shock-3 group had higher lactate (p < 0.001), greater resuscitation-fluid requirement (p = 0.014), higher Simplified Acute Physiology Score II (p < 0.001) and Sepsis-related Organ Failure Assessment scores (p = 0.022), lower platelet count (p = 0.002) and higher 90-day mortality (46.7% vs 51.9%; p = 0.031). Albumin decreased mortality in Shock-2 patients compared to crystalloids (43.5% vs 49.9%; 12.6% relative risk reduction; p = 0.04). In patients defined by Shock-3 a similar benefit was observed for albumin with a 11.3% relative risk reduction (48.7% vs 54.9%; 11.3% relative risk reduction; p = 0.22). CONCLUSIONS: The Sepsis-3 definition reduced the size of the population with shock and showed a similar effect size in the benefits of albumin. The Shock-3 criteria will markedly slow patients' recruitment rates, in view of testing albumin in septic shock. TRIAL REGISTRATION: ClinicalTrials.gov, number NCT00707122 . Registered on 30 June 2008.


Asunto(s)
Albúmina Sérica Humana/uso terapéutico , Choque Séptico/clasificación , Choque Séptico/tratamiento farmacológico , Anciano , Femenino , Humanos , Hipotensión/fisiopatología , Hipotensión/prevención & control , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Albúmina Sérica Humana/farmacología , Índice de Severidad de la Enfermedad , Choque Séptico/diagnóstico , Estadísticas no Paramétricas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...