Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Epilepsia ; 61(6): 1142-1155, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32452540

RESUMEN

OBJECTIVE: To define the phenotypic spectrum of phosphatidylinositol glycan class A protein (PIGA)-related congenital disorder of glycosylation (PIGA-CDG) and evaluate genotype-phenotype correlations. METHODS: Our cohort encompasses 40 affected males with a pathogenic PIGA variant. We performed a detailed phenotypic assessment, and in addition, we reviewed the available clinical data of 36 previously published cases and assessed the variant pathogenicity using bioinformatical approaches. RESULTS: Most individuals had hypotonia, moderate to profound global developmental delay, and intractable seizures. We found that PIGA-CDG spans from a pure neurological phenotype at the mild end to a Fryns syndrome-like phenotype. We found a high frequency of cardiac anomalies including structural anomalies and cardiomyopathy, and a high frequency of spontaneous death, especially in childhood. Comparative bioinformatical analysis of common variants, found in the healthy population, and pathogenic variants, identified in affected individuals, revealed a profound physiochemical dissimilarity of the substituted amino acids in variant constrained regions of the protein. SIGNIFICANCE: Our comprehensive analysis of the largest cohort of published and novel PIGA patients broadens the spectrum of PIGA-CDG. Our genotype-phenotype correlation facilitates the estimation on pathogenicity of variants with unknown clinical significance and prognosis for individuals with pathogenic variants in PIGA.


Asunto(s)
Variación Genética/genética , Hernia Diafragmática/diagnóstico por imagen , Hernia Diafragmática/genética , Deformidades Congénitas de las Extremidades/diagnóstico por imagen , Deformidades Congénitas de las Extremidades/genética , Proteínas de la Membrana/genética , Adulto , Secuencia de Aminoácidos , Niño , Estudios de Cohortes , Electroencefalografía/métodos , Facies , Hernia Diafragmática/fisiopatología , Humanos , Recién Nacido , Deformidades Congénitas de las Extremidades/fisiopatología , Imagen por Resonancia Magnética/métodos , Masculino
2.
Mol Genet Genomic Med ; 7(12): e973, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31568715

RESUMEN

BACKGROUND: The nuclear encoded gene RMND1 (Required for Meiotic Nuclear Division 1 homolog) has recently been linked to RMND1-related mitochondrial disease (RRMD). This autosomal recessive condition characteristically presents with an infantile-onset multisystem disease characterized by severe hypotonia, global developmental delay, failure to thrive, sensorineural hearing loss, and lactic acidosis. Renal disease, however, appears to be one of the more prominent features of RRMD, affecting patients at significantly higher numbers compared to other mitochondrial diseases. We report the clinical, histological, and molecular findings of four RRMD patients across three academic institutions with a focus on the renal manifestations. METHODS: Four patients were identified for the purpose of this study, all of whom had molecular confirmation at the time of inclusion, which included the common pathogenic variant c.713A>G (p.N238S) as well as the three rare variants: c.485delC (p.P162fs), c.533C>T (p.T178M), and c.1317 + 1G>C splice donor variant. Medical history and laboratory findings were collected from the medical records and medical providers. RESULTS: In this study, all four patients developed renal disease characterized as tubulopathy (3/4), renal tubular acidosis (2/4), interstitial nephritis (1/4), and/or end-stage renal disease (4/4) necessitating renal transplantation (2/4). Histological evaluation of renal biopsy specimens revealed generalized tubular atrophy and on electron microscopy, abundant mitochondria with pleomorphism and abnormal cristae. CONCLUSION: Our experience with RRMD demonstrates a specific pattern of renal disease manifestations and clinical course. Patients are unlikely to respond to traditional chronic kidney disease (CKD) treatments, making early diagnosis and consideration of renal transplantation paramount to the management of RRMD.


Asunto(s)
Proteínas de Ciclo Celular/genética , Enfermedades Renales/genética , Enfermedades Mitocondriales/genética , Mutación , Adolescente , Niño , Femenino , Humanos , Enfermedades Renales/etiología , Masculino , Enfermedades Mitocondriales/complicaciones , Fenotipo , Sitios de Empalme de ARN
3.
Genet Med ; 21(11): 2663, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31267042

RESUMEN

In the Acknowledgements section of the paper the authors neglected to mention that the study was supported by a grant from the National Human Genome Research Institute (NHGRI) UM1HG007301 (S.H., M.L.T.). In addition, the award of MD was associated with the authors Michelle L. Thompson and Susan Hiatt instead of PhD. The PDF and HTML versions of the Article have been modified accordingly.

4.
Genet Med ; 21(12): 2713-2722, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31155615

RESUMEN

PURPOSE: Mediator is a multiprotein complex that allows the transfer of genetic information from DNA binding proteins to the RNA polymerase II during transcription initiation. MED12L is a subunit of the kinase module, which is one of the four subcomplexes of the mediator complex. Other subunits of the kinase module have been already implicated in intellectual disability, namely MED12, MED13L, MED13, and CDK19. METHODS: We describe an international cohort of seven affected individuals harboring variants involving MED12L identified by array CGH, exome or genome sequencing. RESULTS: All affected individuals presented with intellectual disability and/or developmental delay, including speech impairment. Other features included autism spectrum disorder, aggressive behavior, corpus callosum abnormality, and mild facial morphological features. Three individuals had a MED12L deletion or duplication. The other four individuals harbored single-nucleotide variants (one nonsense, one frameshift, and two splicing variants). Functional analysis confirmed a moderate and significant alteration of RNA synthesis in two individuals. CONCLUSION: Overall data suggest that MED12L haploinsufficiency is responsible for intellectual disability and transcriptional defect. Our findings confirm that the integrity of this kinase module is a critical factor for neurological development.


Asunto(s)
Discapacidad Intelectual/genética , Complejo Mediador/genética , Complejo Mediador/metabolismo , Adolescente , Trastorno del Espectro Autista/genética , Niño , Preescolar , Discapacidades del Desarrollo/genética , Exoma/genética , Femenino , Mutación del Sistema de Lectura/genética , Humanos , Masculino , Mutación/genética , Eliminación de Secuencia/genética , Factores de Transcripción/genética , Adulto Joven
6.
Genome Med ; 11(1): 12, 2019 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-30819258

RESUMEN

BACKGROUND: Neurodevelopmental disorders are genetically and phenotypically heterogeneous encompassing developmental delay (DD), intellectual disability (ID), autism spectrum disorders (ASDs), structural brain abnormalities, and neurological manifestations with variants in a large number of genes (hundreds) associated. To date, a few de novo mutations potentially disrupting TCF20 function in patients with ID, ASD, and hypotonia have been reported. TCF20 encodes a transcriptional co-regulator structurally related to RAI1, the dosage-sensitive gene responsible for Smith-Magenis syndrome (deletion/haploinsufficiency) and Potocki-Lupski syndrome (duplication/triplosensitivity). METHODS: Genome-wide analyses by exome sequencing (ES) and chromosomal microarray analysis (CMA) identified individuals with heterozygous, likely damaging, loss-of-function alleles in TCF20. We implemented further molecular and clinical analyses to determine the inheritance of the pathogenic variant alleles and studied the spectrum of phenotypes. RESULTS: We report 25 unique inactivating single nucleotide variants/indels (1 missense, 1 canonical splice-site variant, 18 frameshift, and 5 nonsense) and 4 deletions of TCF20. The pathogenic variants were detected in 32 patients and 4 affected parents from 31 unrelated families. Among cases with available parental samples, the variants were de novo in 20 instances and inherited from 4 symptomatic parents in 5, including in one set of monozygotic twins. Two pathogenic loss-of-function variants were recurrent in unrelated families. Patients presented with a phenotype characterized by developmental delay, intellectual disability, hypotonia, variable dysmorphic features, movement disorders, and sleep disturbances. CONCLUSIONS: TCF20 pathogenic variants are associated with a novel syndrome manifesting clinical characteristics similar to those observed in Smith-Magenis syndrome. Together with previously described cases, the clinical entity of TCF20-associated neurodevelopmental disorders (TAND) emerges from a genotype-driven perspective.


Asunto(s)
Anomalías Craneofaciales/genética , Discapacidades del Desarrollo/genética , Mutación INDEL , Discapacidad Intelectual/genética , Hipotonía Muscular/genética , Síndrome de Smith-Magenis/genética , Factores de Transcripción/genética , Adolescente , Niño , Preescolar , Anomalías Craneofaciales/patología , Discapacidades del Desarrollo/patología , Femenino , Humanos , Lactante , Discapacidad Intelectual/patología , Masculino , Hipotonía Muscular/patología , Síndrome de Smith-Magenis/patología , Factores de Transcripción/metabolismo , Adulto Joven
7.
Neuropediatrics ; 50(2): 96-102, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30665247

RESUMEN

Next-generation sequencing is a powerful diagnostic tool, yet it has proven inadequate to establish a diagnosis in all cases of congenital hypotonia or childhood onset weakness. We sought to describe the impact of whole exome sequencing (WES), which has only recently become widely available clinically, on molecular diagnosis in the Nationwide Children's Hospital Neuromuscular clinics. We reviewed records of all patients in our clinic with pediatric onset of symptoms who had WES done since 2013. Patients were included if clinical suspicion was high for a neuromuscular disease. Clinical WES was performed in 30 families, representing 31 patients, all of whom were seen for hypotonia, weakness, or gait disturbance. Probands had between 2 and 12 genetic diagnostic tests prior to obtaining WES. A genetic diagnosis was established in 11 families (37%), and in 12 patients (39%), with mutations in 10 different genes. Five of these genes have only been associated with disease since 2013, and were not previously represented on clinically available disease gene panels. Our results confirm the utility of WES in the clinical setting, particularly for genetically heterogeneous syndromes. The availability of WES can provide an end to the diagnostic odyssey for parents and allow for expansion of phenotypes.


Asunto(s)
Secuenciación del Exoma/métodos , Pruebas Genéticas/métodos , Enfermedades Neuromusculares/diagnóstico , Enfermedades Neuromusculares/genética , Adolescente , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino
8.
Front Genet ; 9: 54, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29515625

RESUMEN

The adoption rate of genome sequencing for clinical diagnostics has been steadily increasing leading to the possibility of improvement in diagnostic yields. Although laboratories generate a summary clinical report, sharing raw genomic data with healthcare providers is equally important, both for secondary research studies as well as for a deeper analysis of the data itself, as seen by the efforts from organizations such as American College of Medical Genetics and Genomics and Global Alliance for Genomics and Health. Here, we aim to describe the existing protocol of genomic data sharing between a certified clinical laboratory and a healthcare provider and highlight some of the lessons learned. This study tracked and subsequently evaluated the data transfer workflow for 19 patients, all of whom consented to be part of this research study and visited the genetics clinic at a tertiary pediatric hospital between April 2016 to December 2016. Two of the most noticeable elements observed through this study are the manual validation steps and the discrepancies in patient identifiers used by a clinical lab vs. healthcare provider. Both of these add complexity to the transfer process as well as make it more susceptible to errors. The results from this study highlight some of the critical changes that need to be made in order to improve genomic data sharing workflows between healthcare providers and clinical sequencing laboratories.

9.
PLoS Genet ; 13(7): e1006905, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28742085

RESUMEN

Dominant mutations in CACNA1A, encoding the α-1A subunit of the neuronal P/Q type voltage-dependent Ca2+ channel, can cause diverse neurological phenotypes. Rare cases of markedly severe early onset developmental delay and congenital ataxia can be due to de novo CACNA1A missense alleles, with variants affecting the S4 transmembrane segments of the channel, some of which are reported to be loss-of-function. Exome sequencing in five individuals with severe early onset ataxia identified one novel variant (p.R1673P), in a girl with global developmental delay and progressive cerebellar atrophy, and a recurrent, de novo p.R1664Q variant, in four individuals with global developmental delay, hypotonia, and ophthalmologic abnormalities. Given the severity of these phenotypes we explored their functional impact in Drosophila. We previously generated null and partial loss-of-function alleles of cac, the homolog of CACNA1A in Drosophila. Here, we created transgenic wild type and mutant genomic rescue constructs with the two noted conserved point mutations. The p.R1673P mutant failed to rescue cac lethality, displayed a gain-of-function phenotype in electroretinograms (ERG) recorded from mutant clones, and evolved a neurodegenerative phenotype in aging flies, based on ERGs and transmission electron microscopy. In contrast, the p.R1664Q variant exhibited loss of function and failed to develop a neurodegenerative phenotype. Hence, the novel R1673P allele produces neurodegenerative phenotypes in flies and human, likely due to a toxic gain of function.


Asunto(s)
Alelos , Canales de Calcio/genética , Ataxia Cerebelosa/genética , Genoma Humano , Enfermedades Neurodegenerativas/genética , Animales , Animales Modificados Genéticamente , Ataxia Cerebelosa/diagnóstico por imagen , Niño , Preescolar , Drosophila melanogaster/genética , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Microscopía Electrónica de Transmisión , Mutación Missense , Neuroimagen , Fenotipo , Mutación Puntual
10.
World J Pediatr ; 13(2): 129-135, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28194692

RESUMEN

BACKGROUND: The cystic fibrosis transmembrane conductance regulator (CFTR) gene mutation identification is being used with increased frequency to aid in the diagnosis of cystic fibrosis (CF) in those suspected with CF. Aim of this study was to identify diagnostic outcomes when CFTR mutational analysis was used in CF diagnosis. CFTR mutational analysis results were also compared with sweat chloride results. METHODS: This study was done on all patients at our institution who had CFTR mutation analysis over a sevenyear period since August 2006. RESULTS: A total of 315 patients underwent CFTR mutational analysis. Fifty-one (16.2%) patients had two mutations identified. Among them 32 had positive sweat chloride levels (≥60 mmol/L), while seven had borderline sweat chloride levels (40-59 mmol/L). An additional 70 patients (22.3%) had only one mutation identified. Among them eight had positive sweat chloride levels, and 17 had borderline sweat chloride levels. Fifty-five patients (17.5%) without CFTR mutations had either borderline (n=45) or positive (n=10) sweat chloride results. Three patients with a CF phenotype had negative CFTR analysis but elevated sweat chloride levels. In eighty-three patients (26.4%) CFTR mutational analysis was done without corresponding sweat chloride testing. CONCLUSIONS: Although CFTR mutation analysis has improved the diagnostic capability for CF, its use either as the first step or the only test to diagnose CFTR dysfunction should be discouraged and CF diagnostic guidelines need to be followed.


Asunto(s)
Algoritmos , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Fibrosis Quística/genética , Fibrosis Quística/fisiopatología , Regulación de la Expresión Génica , Sudor/química , Adolescente , Adulto , Anciano , Niño , Cloruros/análisis , Análisis Mutacional de ADN , Bases de Datos Factuales , Femenino , Pruebas Genéticas/métodos , Humanos , Masculino , Persona de Mediana Edad , Fenotipo , Estudios Retrospectivos , Sensibilidad y Especificidad , Adulto Joven
11.
Am J Med Genet A ; 170(12): 3165-3171, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27480077

RESUMEN

Increasing numbers of congenital disorders of glycosylation (CDG) have been reported recently resulting in an expansion of the phenotypes associated with this group of disorders. SRD5A3 codes for polyprenol reductase which converts polyprenol to dolichol. This is a major pathway for dolichol biosynthesis for N-glycosylation, O-mannosylation, C-mannosylation, and GPI anchor synthesis. We present the features of five individuals (three children and two adults) with mutations in SRD5A3 focusing on the variable eye and skin involvement. We compare that to 13 affected individuals from the literature including five adults allowing us to delineate the features that may develop over time with this disorder including kyphosis, retinitis pigmentosa, and cataracts. © 2016 Wiley Periodicals, Inc.


Asunto(s)
3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa/genética , Trastornos Congénitos de Glicosilación/genética , Ojo/fisiopatología , Proteínas de la Membrana/genética , Piel/fisiopatología , Adulto , Niño , Trastornos Congénitos de Glicosilación/fisiopatología , Dolicoles/metabolismo , Femenino , Glicosilación , Homocigoto , Humanos , Masculino , Mutación , Fenotipo , Tretinoina/análogos & derivados , Tretinoina/metabolismo
12.
Hum Genet ; 134(1): 97-109, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25326669

RESUMEN

Recently, de novo heterozygous loss-of-function mutations in beta-catenin (CTNNB1) were described for the first time in four individuals with intellectual disability (ID), microcephaly, limited speech and (progressive) spasticity, and functional consequences of CTNNB1 deficiency were characterized in a mouse model. Beta-catenin is a key downstream component of the canonical Wnt signaling pathway. Somatic gain-of-function mutations have already been found in various tumor types, whereas germline loss-of-function mutations in animal models have been shown to influence neuronal development and maturation. We report on 16 additional individuals from 15 families in whom we newly identified de novo loss-of-function CTNNB1 mutations (six nonsense, five frameshift, one missense, two splice mutation, and one whole gene deletion). All patients have ID, motor delay and speech impairment (both mostly severe) and abnormal muscle tone (truncal hypotonia and distal hypertonia/spasticity). The craniofacial phenotype comprised microcephaly (typically -2 to -4 SD) in 12 of 16 and some overlapping facial features in all individuals (broad nasal tip, small alae nasi, long and/or flat philtrum, thin upper lip vermillion). With this detailed phenotypic characterization of 16 additional individuals, we expand and further establish the clinical and mutational spectrum of inactivating CTNNB1 mutations and thereby clinically delineate this new CTNNB1 haploinsufficiency syndrome.


Asunto(s)
Discapacidad Intelectual/genética , Microcefalia/genética , Mutación/genética , beta Catenina/genética , Niño , Preescolar , Femenino , Estudios de Seguimiento , Haploinsuficiencia , Humanos , Lactante , Discapacidad Intelectual/patología , Masculino , Microcefalia/patología , Fenotipo , Síndrome
13.
Am J Hum Genet ; 95(5): 579-83, 2014 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-25439098

RESUMEN

5q31.3 microdeletion syndrome is characterized by neonatal hypotonia, encephalopathy with or without epilepsy, and severe developmental delay, and the minimal critical deletion interval harbors three genes. We describe 11 individuals with clinical features of 5q31.3 microdeletion syndrome and de novo mutations in PURA, encoding transcriptional activator protein Pur-α, within the critical region. These data implicate causative PURA mutations responsible for the severe neurological phenotypes observed in this syndrome.


Asunto(s)
Anomalías Múltiples/genética , Deleción Cromosómica , Cromosomas Humanos Par 5/genética , Proteínas de Unión al ADN/genética , Hipotonía Muscular/genética , Convulsiones/genética , Factores de Transcripción/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Caenorhabditis elegans/genética , Mapeo Cromosómico , Humanos , Datos de Secuencia Molecular , Mutación/genética , Análisis de Secuencia de ADN , Síndrome
14.
Eur J Hum Genet ; 22(1): 105-9, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23695283

RESUMEN

Recent studies have shown that certain copy number variations (CNV) are associated with a wide range of neurodevelopmental disorders, including autism spectrum disorders (ASD), bipolar disorder and intellectual disabilities. Implicated regions and genes have comprised a variety of post synaptic complex proteins and neurotransmitter receptors, including gamma-amino butyric acid A (GABAA). Clusters of GABAA receptor subunit genes are found on chromosomes 4p12, 5q34, 6q15 and 15q11-13. Maternally inherited 15q11-13 duplications among individuals with neurodevelopmental disorders are well described, but few case reports exist for the other regions. We describe a family with a 2.42 Mb duplication at chromosome 4p13 to 4p12, identified in the index case and other family members by oligonucleotide array comparative genomic hybridization, that contains 13 genes including a cluster of four GABAA receptor subunit genes. Fluorescent in-situ hybridization was used to confirm the duplication. The duplication segregates with a variety of neurodevelopmental disorders in this family, including ASD (index case), developmental delay, dyspraxia and ADHD (brother), global developmental delays (brother), learning disabilities (mother) and bipolar disorder (maternal grandmother). In addition, we identified and describe another individual unrelated to this family, with a similar duplication, who was diagnosed with ASD, ADHD and borderline intellectual disability. The 4p13 to 4p12 duplication appears to confer a susceptibility to a variety of neurodevelopmental disorders in these two families. We hypothesize that the duplication acts through a dosage effect of GABAA receptor subunit genes, adding evidence for alterations in the GABAergic system in the etiology of neurodevelopmental disorders.


Asunto(s)
Trastornos Generalizados del Desarrollo Infantil/genética , Hibridación Genómica Comparativa , Variaciones en el Número de Copia de ADN/genética , Discapacidades del Desarrollo/genética , Receptores de GABA-A/genética , Adulto , Niño , Trastornos Generalizados del Desarrollo Infantil/etiología , Trastornos Generalizados del Desarrollo Infantil/patología , Preescolar , Cromosomas Humanos Par 4/genética , Discapacidades del Desarrollo/etiología , Discapacidades del Desarrollo/patología , Femenino , Duplicación de Gen , Humanos , Hibridación Fluorescente in Situ , Masculino , Linaje , Fenotipo
15.
Eur J Med Genet ; 56(11): 609-13, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24080358

RESUMEN

A newborn with severe microcephaly and a history of parental consanguinity was referred for cytogenetic analysis and subsequently for genetic evaluation. While a 46,XY karyotype was eventually obtained, premature chromosome condensation was observed. A head MRI confirmed primary microcephaly. This combination of features focused clinical interest on the MCPH1 gene and directed genetic testing by sequence analysis and duplication/deletion studies disclosed a homozygous deletion of exons 1-11 of the MCPH1 gene. This case illustrates a strength of standard cytogenetic evaluation in directing molecular testing to a single target gene in this disorder, allowing much more rapid diagnosis at a substantial cost savings for this family.


Asunto(s)
Eliminación de Gen , Cariotipo , Microcefalia/genética , Proteínas del Tejido Nervioso/genética , Proteínas de Ciclo Celular , Cromosomas Humanos/genética , Consanguinidad , Proteínas del Citoesqueleto , Exones , Homocigoto , Humanos , Recién Nacido , Masculino , Anomalías Maxilofaciales/diagnóstico , Anomalías Maxilofaciales/genética , Microcefalia/diagnóstico , Síndrome
16.
Eur J Med Genet ; 56(6): 301-8, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23523602

RESUMEN

Oral-facial-digital syndrome type VI (OFD VI) is characterized by the association of malformations of the face, oral cavity and extremities, distinguished from the 12 other OFD syndromes by cerebellar and metacarpal abnormalities. Cerebellar malformations in OFD VI have been described as a molar tooth sign (MTS), thus, including OFD VI among the "Joubert syndrome related disorders" (JSRD). OFD VI diagnostic criteria have recently been suggested: MTS and one or more of the following: 1) tongue hamartoma(s) and/or additional frenula and/or upper lip notch; 2) mesoaxial polydactyly of hands or feet; 3) hypothalamic hamartoma. In order to further delineate this rare entity, we present the neurological and radiological data of 6 additional OFD VI patients. All patients presented oral malformations, facial dysmorphism and distal abnormalities including frequent polydactyly (66%), as well as neurological symptoms with moderate to severe mental retardation. Contrary to historically reported patients, mesoaxial polydactyly did not appear to be a predominant clinical feature in OFD VI. Sequencing analyzes of the 14 genes implicated in JSRD up to 2011 revealed only an OFD1 frameshift mutation in one female OFD VI patient, strengthening the link between these two oral-facial-digital syndromes and JSRD.


Asunto(s)
Síndromes Orofaciodigitales/diagnóstico , Síndromes Orofaciodigitales/genética , Encéfalo/patología , Niño , Preescolar , Femenino , Humanos , Lactante , Imagen por Resonancia Magnética , Mutación , Neuroimagen , Proteínas/genética , Tomografía Computarizada por Rayos X
17.
Am J Med Genet A ; 155A(12): 3002-6, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22065502

RESUMEN

Classical Hutchinson-Gilford progeria syndrome (HGPS) is caused by LMNA mutations that generate an alternatively spliced form of lamin A, termed progerin. HGPS patients present in early childhood with atherosclerosis and striking features of accelerated aging. We report on two pedigrees of adult-onset coronary artery disease with progeroid features, who were referred to our International Registry of Werner Syndrome (WS) because of clinical features consistent with the diagnosis. No mutations were identified in the WRN gene that is responsible for WS, among these patients. Instead, we found two novel heterozygous mutations at the junction of exon 10 and intron 11 of the LMNA gene. These mutations resulted in the production of progerin at a level substantially lower than that of HGPS. Our findings indicate that LMNA mutations may result in coronary artery disease presenting in the fourth to sixth decades along with short stature and a progeroid appearance resembling WS. The absence of early-onset cataracts in this setting should suggest the diagnosis of progeroid laminopathy. This study illustrates the evolving genotype-phenotype relationship between the amount of progerin produced and the age of onset among the spectrum of restrictive dermopathy, HGPS, and atypical forms of WS.


Asunto(s)
Empalme Alternativo , Enfermedad de la Arteria Coronaria/etiología , Enfermedad de la Arteria Coronaria/genética , Lamina Tipo A/genética , Proteínas Nucleares/genética , Progeria/complicaciones , Progeria/genética , Precursores de Proteínas/genética , Adolescente , Adulto , Secuencia de Bases , Niño , Enfermedad de la Arteria Coronaria/diagnóstico , Exones , Facies , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mutación , Progeria/diagnóstico , Síndrome de Werner/genética , Adulto Joven
18.
Pancreas ; 40(5): 773-7, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21673536

RESUMEN

Pancreatitis is a rare occurrence in patients with cystic fibrosis (CF) affecting 1.2% of all patients, but it can be the first presenting sign in approximately 15% of adults with pancreatic sufficiency and a milder CF phenotype. We report a case of a woman with recurrent pancreatitis who has one cystic fibrosis-causing mutation (G551D) and the first known description of a pathologic duplication of exon 19 of the CF transmembrane conductance regulator (CFTR). A 30-year-old white woman with 30 attacks of pancreatitis over a 5-year period starting at age 25 presented to the genetics department. She was found to have a mutation in the SPINK1 gene, IVS3+184T>A, and one cystic fibrosis-causing mutation (G551D) prompting full gene sequencing of the CFTR, revealing an additional duplication of exon 19. Sweat chloride testing was elevated at 97 and 106 mmol/L. Despite normal growth parameters and lung function, it is important to be aware of recurrent pancreatitis as a presenting sign of CF. Comprehensive CF gene analysis is necessary to detect a second CF-causing mutation that may put patients at risk for more severe symptoms of pancreatitis. There is a significant difference in the prevalence of heterozygote mutations between available testing methods.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Fibrosis Quística/genética , Pancreatitis Crónica/genética , Duplicaciones Segmentarias en el Genoma , Adulto , Edad de Inicio , Proteínas Portadoras/genética , Fibrosis Quística/complicaciones , Fibrosis Quística/diagnóstico , Exones , Femenino , Humanos , Mutación , Pancreatitis Crónica/etiología , Recurrencia , Inhibidor de Tripsina Pancreática de Kazal
19.
Am J Med Genet A ; 152A(9): 2301-7, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20683981

RESUMEN

Array comparative genomic hybridization has increasingly become the standard of care to evaluate patients for genomic imbalance. As the patient population evaluated by microarray expands, there is certain to be an increase in the detection of unexpected, yet common diseases. When array results predict a late-onset disorder or cancer predisposition, it becomes a challenge for physicians and counselors to adequately address with patients. Included in this study were three patients described with nonspecific phenotypic findings who underwent microarray testing to better define their disease etiology. An unexpected deletion within the dystrophin gene was observed in each case, despite that no patient was suspected of a dystrophinopathy at the time of testing. The patients included an 8-day-old male with a dystrophin deletion predictive of Becker muscular dystrophy, an 18-month old female found to be the carrier of deletion, and a 4-year-8-month-old male with a deletion predictive of Duchenne muscular dystrophy. In this circumstance it becomes difficult to counsel the family, as well as to predict disease course when underlying medical conditions may exist. However, early detection may enable the patient to receive proactive treatment, and allows for screening of at-risk family members. Ultimately, it is up to the clinician to promote informed decision-making within the family prior to testing, and ensure that adequate counseling is provided during follow-up.


Asunto(s)
Hibridación Genómica Comparativa/métodos , Distrofina/genética , Eliminación de Gen , Edad de Inicio , Preescolar , Familia , Femenino , Asesoramiento Genético , Pruebas Genéticas/métodos , Humanos , Lactante , Recién Nacido , Masculino , Distrofia Muscular de Duchenne/diagnóstico
20.
Autism Res ; 3(3): 137-41, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20533527

RESUMEN

There is a strong genetic component to autism spectrum disorders (ASD), but due to significant genetic heterogeneity, individual genetic abnormalities contribute a small percentage to the overall total. Previous studies have demonstrated PTEN mutations in a sizable proportion of individuals with ASD or mental retardation/developmental delays (MR/DD) and macrocephaly that do not have features of Cowden or Bannayan-Riley-Ruvalcaba syndrome. This study was performed to confirm our previous results. We reviewed the charts of individuals who had PTEN clinical sequencing performed at our institution from January 2008 to July 2009. There were 93 subjects tested from our institution during that period. PTEN mutations were found in 2/39 (5.1%) ASD patients and 2/51 (3.9%) MR/DD patients. Three additional patients without mutations had no diagnostic information. Multiple relatives of individuals with a PTEN mutation had macrocephaly, MR, or early onset cancer (breast, renal, and prostate). Of those relatives tested, all had the familial PTEN mutation. None of the affected relatives had previously been diagnosed with Cowden or Bannayan-Riley-Ruvalcaba syndrome. We noted in our previous study several adult relatives without any findings who carried a mutation. Combined with data from our previous cohort, we have found PTEN mutations in 7/99 (7.1%) of individuals with ASD and 8/100 (8.0%) of individuals with MR/DD, all of whom had macrocephaly. We recommend testing for mutations in PTEN for individuals with ASD or MR/DD and macrocephaly. If mutations are found, other family members should be offered testing and the adults offered cancer screening if they have a PTEN mutation.


Asunto(s)
Trastorno Autístico/genética , Anomalías Craneofaciales/genética , Análisis Mutacional de ADN , Discapacidades del Desarrollo/genética , Discapacidad Intelectual/genética , Trastorno Autístico/diagnóstico , Cefalometría , Niño , Preescolar , Comorbilidad , Anomalías Craneofaciales/diagnóstico , Discapacidades del Desarrollo/diagnóstico , Femenino , Genotipo , Humanos , Lactante , Discapacidad Intelectual/diagnóstico , Discapacidades para el Aprendizaje/diagnóstico , Discapacidades para el Aprendizaje/genética , Masculino , Neoplasias/diagnóstico , Neoplasias/genética , Linaje , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...