Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 10(49): 42766-42776, 2018 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-30456941

RESUMEN

Biofilm formation is one of the main obstacles that occur during in vivo implantation, which compromises the implant functionality and patients' health. This is the inspiration for the development of novel implant materials that contain broad-spectrum antimicrobial activity, including antibacterial and antifungal, and enable the local release of antimicrobial agents. Here, multifunctional calcium phosphate-ionic liquid (IL) materials, possessing antimicrobial and repair/regeneration features plus injectability, are proposed as implants in minimally invasive surgery. This approach was based on the loading of 1-alkyl-3-alkylimidazolium chloride ionic liquids (ILs) (C nMImCl ( n = 4, 10, 16) and (C10)2MImCl) during the in situ sol-gel synthesis of calcium phosphates (CaP) and study of their effects on CaP crystallization and biological properties. Physical, morphological, and biological investigations were performed to evaluate the bionanocomposites' properties. The IL N-alkyl chain length influenced the crystallization of CaP and, consequently, the biological properties, which afforded bionanocomposites (when loaded with C16MImCl or (C10)2MImCl) that, (i) inhibit both in vitro bacterial and fungal growth; (ii) reduce the in vitro inflammatory response; (iii) induce osteogenic differentiation in the basal medium of human mesenchymal stem cells; and (iv) are injectable. This will enable the design of multifunctional injectable implants with antimicrobial, anti-inflammatory, and regenerative properties to be used in minimally invasive surgery of bone and maxillofacial defects.

2.
ACS Appl Mater Interfaces ; 8(13): 8728-36, 2016 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-27020229

RESUMEN

This study is aimed at investigating the structure of a scaffold made of bovine gelatin and hydroxyapatite for bone tissue engineering purposes. In particular, the detailed characterization of such a material has a great relevance because of its application in the healing process of the osteochondral defect that consists of a damage of cartilage and injury of the adjacent subchondral bone, significantly compromising millions of patient's quality of life. Two different techniques exploiting X-ray radiation, with table-top setups, are used: microtomography (micro-CT) and microdiffraction. Micro-CT characterizes the microstructure in the three dimensions at the micrometer scale spatial resolution, whereas microdiffraction provides combined structural/morphological information at the atomic and nanoscale, in two dimensional microscopy images with a hundred micrometer spatial resolution. The combination of these two techniques allowed an appropriate structural characterization for the purpose of validating the engineering approach used for the realization of the hydroxyapatite gradient across the scaffold, with properties close to the natural model.


Asunto(s)
Materiales Biocompatibles/química , Regeneración Ósea , Ingeniería de Tejidos , Andamios del Tejido/química , Animales , Materiales Biocompatibles/uso terapéutico , Bovinos , Durapatita/química , Durapatita/uso terapéutico , Gelatina/química , Gelatina/uso terapéutico , Humanos , Osteocondritis/terapia , Dispersión del Ángulo Pequeño , Microtomografía por Rayos X , Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA