Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomater Sci ; 10(8): 1952-1967, 2022 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-35253814

RESUMEN

The development of an effective amphotericin B (AmB) formulation to replace actual treatments available for leishmaniasis, which present serious drawbacks, is a challenge. Here we report the development of hyaluronic acid-amphotericin B self-assembled nanocomplexes (HA-AmB), processed by freeze-drying (FD) or nano spray-drying (SD), using a simple process that favors the non-covalent drug-polysaccharide association in an amorphous state. These water-soluble formulations, which presented a nanometric size (300-600 nm), high colloidal stability (zeta potential around -39 mV) and an AmB loading (15-18%) in aggregated and super aggregated states, demonstrated less in vitro cytotoxic and hemolytic effects compared to the free-drug. A significant decrease in the number of intramacrophagic L. infantum amastigotes upon treatment (IC50 of 0.026 and 0.030 µM for HA-AmB FD and HA-AmB SD, respectively) was also observed, and the best selectivity index (SI) was observed for the HA-AmB SD nanocomplex (SI of 651). Intravenous administration of the HA-AmB SD nanocomplex for 3 alternate days showed an effective parasite reduction in the spleen and liver of C57BL/6 mice without signs of toxicity commonly observed upon free-AmB treatment. Although lower than that achieved with AmBisome® in the liver, the observed parasite reduction for the nanocomplex was of a similar order of magnitude. The efficacy, stability, safety and low cost of the HA-AmB SD nanocomplex highlight its potential as an alternative treatment for leishmaniasis.


Asunto(s)
Anfotericina B , Leishmaniasis , Anfotericina B/farmacología , Animales , Sistemas de Liberación de Medicamentos , Ácido Hialurónico/uso terapéutico , Leishmaniasis/tratamiento farmacológico , Ratones , Ratones Endogámicos C57BL
2.
Int J Biol Macromol ; 202: 453-467, 2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35031317

RESUMEN

Electrohydrodynamic processing (EHDP) allows the use of a wide range of biopolymers and solvents, including food-grade biopolymers and green solvents, for the development of micro- and nanostructures. These structures present a high surface-area-to-volume ratio and different shapes and morphologies. The aim of this work was to design and produce hydroxypropyl methylcellulose (HPMC)-based micro- and nanostructures through EHD processing using green solvents, while exploring the influence of process and solution parameters, and incorporating a bioactive extracted from a food by-product. Low (LMW) and high (HMW) molecular weight HPMC have been used as polymers. The design-of-experiments methodology was used to determine the effects of process parameters (polymer concentration, flow rate, tip-to-collector distance, and voltage) of EHDP on the particle and fibre diameter, aspect ratio, diameter distribution, aspect ratio distribution, and percentage of fibre breakage. Additionally, melanoidins extracted from spent coffee grounds were encapsulated into the HPCM-based structures at a concentration of 2.5 mg melanoidins/mL of the polymer solution. Polymer solutions were characterised regarding their viscosity, surface tension and conductivity, and showed that the incorporation of melanoidins increased the viscosity and conductivity values of the polymer solutions. The developed structures were characterised regarding their thermal properties, crystallinity and morphology before and after melanoidin incorporation and it was observed that melanoidin incorporation did not significantly influence the characteristics of the produced micro- and nanostructures. Based on the results, it is possible to envision the use of the produced micro- and nanostructures in a wide range of applications, both in food and biomedical fields.


Asunto(s)
Nanoestructuras , Polímeros , Conductividad Eléctrica , Derivados de la Hipromelosa , Polímeros/química
3.
J Food Sci ; 77(7): N21-8, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22757715

RESUMEN

UNLABELLED: We propose here a delivery drug-polymer system using poly(N-isopropylacrylamide) (PNIPA) nanohydrogels that enables pimaricin to be protected from hostile environments and allows the controlled release of the antifungal through environmental stimuli. We synthesized 2 nanohydrogels, 1 with 100% N-isopropylacrylamide (PNIPA(5)) and 1 with 80% N-isopropylacrylamide copolymerized and 20% acrylic acid (PNIPA-20AA(5)). Both were then, loaded with a pimaricin aqueous solution. The pimaricin release profiles of these 2 nanohydrogels were considerably different: PNIPA(5) released 10% and PNIPA-20AA(5) released 30% with respect to the free pimaricin release. Moreover, the diffusion experiments showed that pimaricin was released from the PNIPA-20AA(5) nanohydrogel for up to 3 times longer than free pimaricin. Therefore, incorporating acrylic acid as comonomer into the PNIPA nanohydrogel resulted in a slower but more continuous release of pimaricin. The highest pimaricin levels were reached when the most hydrophilic nanohydrogel was used. The bioassay results showed that the pimaricin-nanohydrogel system was highly effective in inhibiting the growth of the indicator strain in conditions of thermal abuse. The spoilage in acidified samples stored under fluorescent lighting was reduced by 80.94% ± 33.02% in samples treated with a pimaricin-loaded nanohydrogel, but only by 19.91% ± 6.68% in samples treated with free pimaricin. Therefore, 2 conclusions emerge from this study. One is that the nanohydrogel delivery system could impede the degradation of pimaricin. The other is that the inhibitory effect of the antifungal on yeast growth is more pronounced when it is added included into the nanohydrogel to the food, especially in an acidic environment. PRACTICAL APPLICATION: This article presents relevant results on the use of nanohydrogels in food packaging. Nanohydrogels could provide protection so that the pimaricin remains active for a longer time. They also allow the controlled release of pimaricin, which thus regulates the unnecessary presence of the antifungal in the food.


Asunto(s)
Acrilamidas/química , Antifúngicos/farmacología , Preparaciones de Acción Retardada/química , Embalaje de Alimentos/métodos , Natamicina/farmacología , Polímeros/química , Acrilatos/química , Resinas Acrílicas , Hidrogeles/química , Nanopartículas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...