Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Nutr ; 11: 1393076, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39171116

RESUMEN

Introduction: Being one of the "big three" most cultivated cereals in the world, wheat plays a crucial role in ensuring global food/nutrition security, supplying close to 20% of the global needs for calories and proteins. However, the increasingly large fluctuations between years in temperatures and precipitation due to climate change cause important variations in wheat production worldwide. This fact makes wheat breeding programs a tool that, far from going out of fashion, is becoming the most important solution to develop varieties that can provide humanity with the sufficient amount of food it demands without forgetting the objective of quality. Material and methods: The National Institute of Agricultural and Veterinary Research in Portugal has carried out a long-term experiment (9 years) in different locations to test four different bread-making wheat cultivars, each representing important variations in germplasm. Wheat yield and quality traits obtained by official methods were recorded in 18 different environments regarding temperature and precipitation. Results and discussion: According to the ANOVA and PCA, protein content, wet gluten, dough tenacity, and extensibility were found to be highly affected by the environment. Paiva cultivar presented a higher yield in almost all the tested environments, but its quality traits varied enormously. Contrary behavior was recorded for Valbona cultivar. Antequera cultivar, with a production ranging between 4.7 and 9.3 tons/ha and a protein content between 11 and 16.8%, seems to be the most resilient cultivar regarding both productivity and quality of the flour with reference to changes in the main climate traits. The most ancient cultivar, Roxo, released in 1996, showed the worst results in this experiment, supporting the need to continue working in wheat breeding to meet the unavoidable changes in the environment.

2.
Plants (Basel) ; 10(2)2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-33494526

RESUMEN

This study aimed to assess the implications of Zn enrichment in wheat grains as a function of contrasting genotypes, edaphic conditions and foliar fertilizers. Triticum aestivum L. varieties Roxo and Paiva were grown in four production fields, and sprayed with ZnSO4 (0, 16.20 and 36.40 kg/ha) Zn-EDTA (0, 6.30 and 12.60 kg/ha) and Tecnifol Zinc (0, 3.90 and 7.80 kg/ha). The heterogeneous edaphic conditions of the wheat fields were chemically characterized, it being found that soil properties determine different Zn accumulation in the grains of both genotypes. Foliar spraying enhanced to different extents Zn content in the grains of both genotypes, but the average of enrichment indexes varied among the wheat fields. Zinc mostly accumulated in the embryo and vascular bundle and to a lesser extent in the endosperm. Grain yield and test weight sprayed by ZnSO4 gave the highest values in both genotypes, but the opposite was found for Zn-EDTA. Considering the color parameters, lightness and red-green transitions were found to be a conjunction of genotype characteristics, fertilization types and edaphic conditions prevailing in each field. It is concluded that the index of Zn enrichment in wheat grains is a docket of edaphic conditions, genotype and type of fertilization.

3.
Plants (Basel) ; 8(10)2019 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-31635125

RESUMEN

Global climate change accentuates the seasonal and interannual irregularity of temperature and precipitation of the Mediterranean climate. The consequences of this variability on wheat production are felt on its development cycle and productivity, making the production chain of this crop vulnerable to the occurrence of years with abnormal distributions of precipitation and with extreme temperatures. Adaptation strategies like irrigation or fertilization can help to cope with the negative impacts of climate uncertainty. This study evaluated the effects of water regime and nitrogen (N) fertilization techniques on wheat production in southern Portugal based on the results of three trials conducted in two agricultural years (2016/2017 and 2017/2018) with contrasting climate conditions. Phenology and yield were evaluated by comparing water regimes (R1, full irrigation; R2, supplemental irrigation at four stages: start of stem extension, booting, anthesis, grain filling; R0, rainfed (in 2017/2018)) and N fertilization splitting/timing and type (conventional and enhanced efficiency fertilizers (EEFs): controlled-release N, stabilized with nitrification inhibitor, and stabilized with urease inhibitor). Significant effects of water regime on grain yield were obtained in 2016/2017, a year with extreme aridity and high water requirements felt from the tillering stage, in the trial with conventional fertilizers. In 2017/2018, when a beneficial seasonal rainfall distribution occurred, water regime did not influence grain yield, pointing to the feasibility of supplementary irrigation to maximize water productivity. Nitrogen fertilization influenced yield and its components, with the highest values of grain yield being obtained with conventional fertilizer. Regardless of the possible effects on grain quality, the use of EEF did not prove to have an indisputable effect on wheat yield in the conditions under which the trials were conducted. Comparison of the results in the two years accentuates the need to continue the evaluation of the influence of agronomic management in wheat production in the context of adaptation to the climatic uncertainty in Mediterranean regions.

4.
Sci Total Environ ; 463-464: 943-51, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-23872185

RESUMEN

The agricultural reuse of pretreated industrial wastewater resulting from cheese manufacture is shown as a suitable option for its disposal and management. This alternative presents attractive advantages from the economic and pollution control viewpoints. Pretreated cheese whey wastewater (CWW) has high contents of biodegradable organic matter, salinity and nutrients, which are essential development factors for plants with moderate to elevated salinity tolerance. Five different pretreated CWW treatments (1.75 to 10.02 dS m(-1)) have been applied in the tomato plant growth. Fresh water was used as a control run (average salinity level=1.44 dS m(-1)). Chemical characterization and indicator ratios of the leaves, stems and roots were monitored. The sodium and potassium leaf concentrations increased linearly with the salinity level in both cultivars, Roma and Rio Grande. Similar results were found in the stem sodium content. However, the toxic sodium accumulations in the cv. Roma exceeded the values obtained in the cv. Rio Grande. In this last situation, K and Ca uptake, absorption, transport and accumulation capacities were presented as tolerance mechanisms for the osmotic potential regulation of the tissues and for the ion neutralization. Consequently, Na/Ca and Na/K ratios presented lower values in the cv. Rio Grande. Na/Ca ratio increased linearly with the salinity level in leaves and stems, regardless of the cultivar. Regarding the Na/K ratio, the values demonstrated competition phenomena between the ions for the cv. Rio Grande. Despite the high chloride content of the CWW, no significant differences were observed for this nutrient in the leaves and stems. Thus, no nitrogen deficiency was demonstrated by the interaction NO3(-)/Cl(-). Nitrogen also contributes to maintain the water potential difference between the tissues and the soil. Na, P, Cl and N radicular concentrations were maximized for high salinity levels (≥2.22 dS m(-1)) of the pretreated CWW.


Asunto(s)
Queso , Tolerancia a la Sal , Solanum lycopersicum/crecimiento & desarrollo , Aguas Residuales , Cloruros/análisis , Solanum lycopersicum/química , Solanum lycopersicum/efectos de los fármacos , Proteínas de la Leche/química , Hojas de la Planta/química , Hojas de la Planta/crecimiento & desarrollo , Raíces de Plantas/química , Raíces de Plantas/crecimiento & desarrollo , Tallos de la Planta/química , Tallos de la Planta/crecimiento & desarrollo , Potasio/análisis , Reciclaje/métodos , Salinidad , Tolerancia a la Sal/efectos de los fármacos , Tolerancia a la Sal/fisiología , Sodio/análisis , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/química , Proteína de Suero de Leche
5.
Water Sci Technol ; 67(9): 2033-41, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23656947

RESUMEN

Pretreated cheese whey wastewater (CWW) has been used at different salinity levels: 1.75, 2.22, 3.22, 5.02 and 10.02 dS m(-1) and compared with fresh water (1.44 dS m(-1)). Two cultivars (cv.) of the tomato plant Lycopersicon Esculentum Mill. (Roma and Rio Grande) were exposed to saline conditions for 72 days. Salinity level (treatment) had no significant effects on the fresh weight and dry matter of the leaves, stems and roots. Similar results were found when specific leaf area, leaflet area, ramifications number of 1st order/plant, stem diameter and length, nodes number/stem and primary root length were considered. Conversely, the salinity level significantly influenced the Soil Plant Analysis Development (SPAD) index and the distance between nodes in the plant stem. In the first case, an increase of 21% was obtained in the salinity levels of 5.02 and 10.02 dS m(-1) for cv. Rio Grande, compared with the control run. The results showed that the pretreated CWW can be a source of nutrients for tomato plants, with reduced effects on growth and development.


Asunto(s)
Riego Agrícola , Queso , Industria de Alimentos , Cloruro de Sodio/química , Solanum lycopersicum/crecimiento & desarrollo , Aguas Residuales , Monitoreo del Ambiente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA