Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Commun Biol ; 6(1): 6, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36596879

RESUMEN

Refractive error, measured here as mean spherical equivalent (SER), is a complex eye condition caused by both genetic and environmental factors. Individuals with strong positive or negative values of SER require spectacles or other approaches for vision correction. Common genetic risk factors have been identified by genome-wide association studies (GWAS), but a great part of the refractive error heritability is still missing. Some of this heritability may be explained by rare variants (minor allele frequency [MAF] ≤ 0.01.). We performed multiple gene-based association tests of mean Spherical Equivalent with rare variants in exome array data from the Consortium for Refractive Error and Myopia (CREAM). The dataset consisted of over 27,000 total subjects from five cohorts of Indo-European and Eastern Asian ethnicity. We identified 129 unique genes associated with refractive error, many of which were replicated in multiple cohorts. Our best novel candidates included the retina expressed PDCD6IP, the circadian rhythm gene PER3, and P4HTM, which affects eye morphology. Future work will include functional studies and validation. Identification of genes contributing to refractive error and future understanding of their function may lead to better treatment and prevention of refractive errors, which themselves are important risk factors for various blinding conditions.


Asunto(s)
Miopía , Errores de Refracción , Humanos , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Miopía/genética , Errores de Refracción/genética , Población Blanca , Pueblos del Este de Asia
2.
Arthritis Rheumatol ; 75(2): 153-163, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36053262

RESUMEN

Idiopathic inflammatory myopathies (IIMs) comprise a heterogeneous group of rare immune-mediated disorders that primarily affect muscles but also lead to dysfunction in other organs. Five different clinical subphenotypes of IIM have been distinguished: dermatomyositis, polymyositis, inclusion body myositis, antisynthetase syndrome, and immune-mediated necrotizing myopathy. Excess mortality and morbidity associated with IIM are largely attributed to comorbidities, particularly cancer. The risk of malignancy is not equally distributed among IIM groups and is particularly high among patients with dermatomyositis. The cancer risk peaks around 3 years on either side of the IIM diagnosis and remains elevated even 10 years after the onset of the disease. Lung, colorectal, and ovarian neoplasms typically arise before the onset of IIM, whereas melanoma, cervical, oropharyngeal, and nonmelanoma skin cancers usually develop after IIM diagnosis. Given the close temporal proximity between IIM diagnosis and the emergence of malignancy, it has been proposed that IIM could be a consequence rather than a cause of cancer, a process known as a paramalignant phenomenon. Thus, a separate group of IIMs related to paramalignant phenomenon has been distinguished, known as cancer-associated myositis (CAM). Although the relationship between IIM and cancer is widely recognized, the pathophysiology of CAM remains elusive. Given that genetic factors play a role in the development of IIM, dissection of the molecular mechanisms shared between IIM and cancer presents an opportunity to examine the role of autoimmunity in cancer development and progression. In this review, the evidence supporting the contribution of genetics to CAM will be discussed.


Asunto(s)
Dermatomiositis , Melanoma , Miositis por Cuerpos de Inclusión , Miositis , Polimiositis , Humanos , Dermatomiositis/complicaciones , Dermatomiositis/genética , Dermatomiositis/diagnóstico , Miositis por Cuerpos de Inclusión/diagnóstico , Miositis por Cuerpos de Inclusión/patología , Melanoma/genética
3.
PLoS One ; 17(9): e0272379, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36137074

RESUMEN

PURPOSE: Genetic variants identified through population-based genome-wide studies are generally of high frequency, exerting their action in the central part of the refractive error spectrum. However, the power to identify associations with variants of lower minor allele frequency is greatly reduced, requiring considerable sample sizes. Here we aim to assess the impact of rare variants on genetic variation of refractive errors in a very large general population cohort. METHODS: Genetic association analyses of non-cyclopaedic autorefraction calculated as mean spherical equivalent (SPHE) used whole-exome sequence genotypic information from 50,893 unrelated participants in the UK Biobank of European ancestry. Gene-based analyses tested for association with SPHE using an optimised SNP-set kernel association test (SKAT-O) restricted to rare variants (minor allele frequency < 1%) within protein-coding regions of the genome. All models were adjusted for age, sex and common lead variants within the same locus reported by previous genome-wide association studies. Potentially causal markers driving association at significant loci were elucidated using sensitivity analyses by sequentially dropping the most associated variants from gene-based analyses. RESULTS: We found strong statistical evidence for association of SPHE with the SIX6 (p-value = 2.15 x 10-10, or Bonferroni-Corrected p = 4.41x10-06) and the CRX gene (p-value = 6.65 x 10-08, or Bonferroni-Corrected p = 0.001). The SIX6 gene codes for a transcription factor believed to be critical to the eye, retina and optic disc development and morphology, while CRX regulates photoreceptor specification and expression of over 700 genes in the retina. These novel associations suggest an important role of genes involved in eye morphogenesis in refractive error. CONCLUSION: The results of our study support previous research highlighting the importance of rare variants to the genetic risk of refractive error. We explain some of the origins of the genetic signals seen in GWAS but also report for the first time a completely novel association with the CRX gene.


Asunto(s)
Estudio de Asociación del Genoma Completo , Errores de Refracción , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Humanos , Polimorfismo de Nucleótido Simple , Errores de Refracción/genética , Factores de Transcripción/genética
4.
Hum Mol Genet ; 31(17): 3012-3019, 2022 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-35220419

RESUMEN

Refractive errors, particularly myopia, are the most common eye conditions, often leading to serious visual impairment. The age of onset is correlated with the severity of refractive error in adulthood observed in epidemiological and genetic studies and can be used as a proxy in refractive error genetic studies. To further elucidate genetic factors that influence refractive error, we analysed self-reported age of refractive error correction data from the UK Biobank European and perform genome-wide time-to-event analyses on the age of first spectacle wear (AFSW). Genome-wide proportional hazards ratio analyses were conducted in 340 318 European subjects. We subsequently assessed the similarities and differences in the genetic architectures of refractive error correction from different causes. All-cause AFSW was genetically strongly correlated (rg = -0.68) with spherical equivalent (the measured strength of spectacle lens required to correct the refractive error) and was used as a proxy for refractive error. Time-to-event analyses found genome-wide significant associations at 44 independent genomic loci, many of which (GJD2, LAMA2, etc.) were previously associated with refractive error. We also identified six novel regions associated with AFSW, the most significant of which was on chromosome 17q (P = 3.06 × 10-09 for rs55882072), replicating in an independent dataset. We found that genes associated with AFSW were significantly enriched for expression in central nervous system tissues and were involved in neurogenesis. This work demonstrates the merits of time-to-event study design in the genetic investigation of refractive error and contributes additional knowledge on its genetic risk factors in the general population.


Asunto(s)
Miopía , Errores de Refracción , Adulto , Anteojos , Estudio de Asociación del Genoma Completo , Humanos , Miopía/genética , Errores de Refracción/genética
5.
Hum Mol Genet ; 31(11): 1909-1919, 2022 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-35022715

RESUMEN

Refractive errors are associated with a range of pathological conditions, such as myopic maculopathy and glaucoma, and are highly heritable. Studies of missense and putative loss of function (pLOF) variants identified via whole exome sequencing (WES) offer the prospect of directly implicating potentially causative disease genes. We performed a genome-wide association study for refractive error in 51 624 unrelated adults, of European ancestry, aged 40-69 years from the UK and genotyped using WES. After testing 29 179 pLOF and 495 263 missense variants, 1 pLOF and 18 missense variants in 14 distinct genomic regions were taken forward for fine-mapping analysis. This yielded 19 putative causal variants of which 18 had a posterior inclusion probability >0.5. Of the 19 putative causal variants, 12 were novel discoveries. Specific variants were associated with a more myopic refractive error, while others were associated with a more hyperopic refractive error. Association with age of onset of spectacle wear (AOSW) was examined in an independent validation sample (38 100 early AOSW cases and 74 243 controls). Of 11 novel variants that could be tested, 8 (73%) showed evidence of association with AOSW status. This work identified COL4A4 and ATM as novel candidate genes associated with refractive error. In addition, novel putative causal variants were identified in the genes RASGEF1, ARMS2, BMP4, SIX6, GSDMA, GNGT2, ZNF652 and CRX. Despite these successes, the study also highlighted the limitations of community-based WES studies compared with high myopia case-control WES studies.


Asunto(s)
Miopía , Errores de Refracción , Adulto , Exoma/genética , Estudio de Asociación del Genoma Completo/métodos , Humanos , Miopía/genética , Proteínas de Neoplasias/genética , Proteínas Citotóxicas Formadoras de Poros , Errores de Refracción/genética , Secuenciación del Exoma
6.
Sci Rep ; 11(1): 23255, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34853365

RESUMEN

To evaluate the influence AMD risk genomic variants have on macular thickness in the normal population. UK Biobank participants with no significant ocular history were included using the UK Biobank Resource (project 2112). Spectral-domain optical coherence tomography (SD-OCT) images were taken and segmented to define retinal layers. The influence of AMD risk single-nucleotide polymorphisms (SNP) on retinal layer thickness was analysed. AMD risk associated SNPs were strongly associated with outer-retinal layer thickness. The inner-segment outer segment (ISOS)-retinal pigment epithelium (RPE) thickness measurement, representing photoreceptor outer segments was most significantly associated with the cumulative polygenic risk score, composed of 33 AMD-associated variants, resulting in a decreased thickness (p = 1.37 × 10-67). Gene-gene interactions involving the NPLOC4-TSPAN10 SNP rs6565597 were associated with significant changes in outer retinal thickness. Thickness of outer retinal layers is highly associated with the presence of risk AMD SNPs. Specifically, the ISOS-RPE measurement. Changes to ISOS-RPE thickness are seen in clinically normal individuals with AMD risk SNPs suggesting structural changes occur at the macula prior to the onset of disease symptoms or overt clinical signs.


Asunto(s)
Degeneración Macular/genética , Epitelio Pigmentado de la Retina/anatomía & histología , Anciano , Bancos de Muestras Biológicas , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad , Epitelio Pigmentado de la Retina/diagnóstico por imagen , Factores de Riesgo , Tomografía de Coherencia Óptica/métodos , Reino Unido
7.
Transl Vis Sci Technol ; 10(8): 26, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34319387

RESUMEN

Purpose: The purpose of this study was to develop an Asian polygenic risk score (PRS) to predict high myopia (HM) in Chinese children in the Singapore Cohort of Risk factors for Myopia (SCORM) cohort. Methods: We included children followed from 6 to 11 years old until teenage years (12-18 years old). Cycloplegic autorefraction, ultrasound biometry, Illumina HumanHap 550, or 550 Duo Beadarrays, demographics, and environmental factors data were obtained. The PRS was generated from the Consortium for Refractive Error and Myopia genomewide association study (n = 542,934) and the Strabismus, Amblyopia, and Refractive Error in Singapore children Study (n = 500). The Growing Up in Singapore Towards healthy Outcomes Cohort study (n = 339) was the replication cohort. The outcome was teenage HM (≤ -5.00 D) with predictive performance assessed using the area under the curve (AUC). Results: Mean baseline age ± SD was 7.85 ± 0.84 (n = 1004) and 571 attended the teenage visit; 23.3% had HM. In multivariate analysis, the PRS was associated with a myopic spherical equivalent with an incremental R2 of 0.041 (95% confidence interval [CI] = 0.010, 0.073; P < 0.001). AUC for HM (0.77 [95% CI = 0.71-0.83]) performed better (P = 0.02) with the PRS compared with a model without (0.72 [95% CI = 0.65, 0.78]). Children at the top 25% PRS risk had a 2.34-fold-greater risk of HM (95% CI = 1.53, 3.55; P < 0.001). Conclusions: The new Asian PRS improved the predictive performance to detect children at risk of HM. Translational Relevance: Clinicians may use the PRS with other predictive factors to identify high risk children and guide interventions to reduce the risk of HM later in life.


Asunto(s)
Miopía , Adolescente , Niño , China , Estudios de Cohortes , Humanos , Miopía/diagnóstico , Factores de Riesgo , Singapur/epidemiología
8.
Commun Biol ; 4(1): 266, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33649486

RESUMEN

Keratoconus is characterised by reduced rigidity of the cornea with distortion and focal thinning that causes blurred vision, however, the pathogenetic mechanisms are unknown. It can lead to severe visual morbidity in children and young adults and is a common indication for corneal transplantation worldwide. Here we report the first large scale genome-wide association study of keratoconus including 4,669 cases and 116,547 controls. We have identified significant association with 36 genomic loci that, for the first time, implicate both dysregulation of corneal collagen matrix integrity and cell differentiation pathways as primary disease-causing mechanisms. The results also suggest pleiotropy, with some disease mechanisms shared with other corneal diseases, such as Fuchs endothelial corneal dystrophy. The common variants associated with keratoconus explain 12.5% of the genetic variance, which shows potential for the future development of a diagnostic test to detect susceptibility to disease.


Asunto(s)
Diferenciación Celular/genética , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Sitios Genéticos , Queratocono/genética , Polimorfismo de Nucleótido Simple , Australia/epidemiología , Estudios de Casos y Controles , Europa (Continente)/epidemiología , Matriz Extracelular/patología , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Queratocono/diagnóstico , Queratocono/etnología , Queratocono/metabolismo , Fenotipo , Medición de Riesgo , Factores de Riesgo
9.
Invest Ophthalmol Vis Sci ; 62(2): 15, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33591358

RESUMEN

Purpose: Refractive errors, particularly myopia, are common and a leading cause of blindness. This study aimed to explore associations between medications and refractive error in an aging adult cohort and to determine whether childhood-onset refractive errors predict future medication use to provide novel insights into disease mechanisms. Methods: The study compared the spherical equivalent values measured in 102,318 UK Biobank participants taking the 960 most commonly used medications. The strengths of associations were evaluated against the self-reported age of spectacle wear. The causality of refractive error changes was inferred using sensitivity and Mendelian randomization analyses. Results: Anti-glaucoma drugs were associated with 1 to 2 diopters greater myopic refraction, particularly in subjects who started wearing correction in the first two decades of life, potentially due to the association of higher intraocular pressure since early years with both myopia and, later in life, glaucoma. All classes of pain-control medications, including paracetamol, opiates, non-steroidal antiinflammatory drugs, and gabapentinoids, were associated with greater hyperopia (+0.68-1.15 diopters), after correction for deprivation, education, and polypharmacy and sensitivity analyses for common diagnoses. Oral hypoglycemics (metformin, gliburonide) were associated with myopia, as was allopurinol, and participants using bronchodilators (ipratropium and salbutamol) were more hyperopic. Conclusions: This study finds for the first time, to our knowledge, that medication use is associated with refractive error in adults. The novel finding that analgesics are associated with hyperopic refraction, and the possibility that multisite chronic pain predisposes to hyperopia, deserves further research. Some drugs, such as antihyperglycemic or bronchodilators, may directly alter refractive error. Intraocular pressure appears causative for myopia.


Asunto(s)
Envejecimiento , Ceguera/etiología , Glaucoma/complicaciones , Vigilancia de la Población , Refracción Ocular/fisiología , Errores de Refracción/complicaciones , Ceguera/epidemiología , Femenino , Glaucoma/fisiopatología , Humanos , Incidencia , Presión Intraocular/fisiología , Masculino , Persona de Mediana Edad , Errores de Refracción/epidemiología , Errores de Refracción/fisiopatología , Factores de Riesgo , Reino Unido/epidemiología
11.
Nat Genet ; 52(4): 401-407, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32231278

RESUMEN

Refractive errors, in particular myopia, are a leading cause of morbidity and disability worldwide. Genetic investigation can improve understanding of the molecular mechanisms that underlie abnormal eye development and impaired vision. We conducted a meta-analysis of genome-wide association studies (GWAS) that involved 542,934 European participants and identified 336 novel genetic loci associated with refractive error. Collectively, all associated genetic variants explain 18.4% of heritability and improve the accuracy of myopia prediction (area under the curve (AUC) = 0.75). Our results suggest that refractive error is genetically heterogeneous, driven by genes that participate in the development of every anatomical component of the eye. In addition, our analyses suggest that genetic factors controlling circadian rhythm and pigmentation are also involved in the development of myopia and refractive error. These results may enable the prediction of refractive error and the development of personalized myopia prevention strategies in the future.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Miopía/genética , Errores de Refracción/genética , Adulto , Anciano , Femenino , Estudio de Asociación del Genoma Completo/métodos , Humanos , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple/genética , Población Blanca/genética
12.
Wellcome Open Res ; 5: 111, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33728380

RESUMEN

Background: Lung function is highly heritable and differs between the sexes throughout life. However, little is known about sex-differential genetic effects on lung function. We aimed to conduct the first genome-wide genotype-by-sex interaction study on lung function to identify genetic effects that differ between males and females. Methods: We tested for interactions between 7,745,864 variants and sex on spirometry-based measures of lung function in UK Biobank (N=303,612), and sought replication in 75,696 independent individuals from the SpiroMeta consortium. Results: Five independent single-nucleotide polymorphisms (SNPs) showed genome-wide significant (P<5x10 -8) interactions with sex on lung function, and 21 showed suggestive interactions (P<1x10 -6). The strongest signal, from rs7697189 (chr4:145436894) on forced expiratory volume in 1 second (FEV 1) (P=3.15x10 -15), was replicated (P=0.016) in SpiroMeta. The C allele increased FEV 1 more in males (untransformed FEV 1 ß=0.028 [SE 0.0022] litres) than females (ß=0.009 [SE 0.0014] litres), and this effect was not accounted for by differential effects on height, smoking or pubertal age. rs7697189 resides upstream of the hedgehog-interacting protein ( HHIP) gene and was previously associated with lung function and HHIP lung expression. We found HHIP expression was significantly different between the sexes (P=6.90x10 -6), but we could not detect sex differential effects of rs7697189 on expression. Conclusions: We identified a novel genotype-by-sex interaction at a putative enhancer region upstream of the HHIP gene. Establishing the mechanism by which HHIP SNPs have different effects on lung function in males and females will be important for our understanding of lung health and diseases in both sexes.

13.
Sci Rep ; 9(1): 18633, 2019 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-31819081

RESUMEN

The influence and effect of cigarette smoking in sarcoidosis is unclear. Here, we evaluated gene-environment interaction between multiple genetic variants including HLA genes and smoking in sarcoidosis defined by two clinical phenotypes, Löfgren's syndrome (LS) and patients without Löfgren's syndrome (non-LS). To quantify smoking effects in sarcoidosis, we performed a gene-environment interaction study in a Swedish population-based case-control study consisting of 3,713 individuals. Cases and controls were classified according to their cigarette smoking status and genotypes by Immunochip platform. Gene-smoking interactions were quantified by an additive interaction model using a logistic regression adjusted by sex, age and first two principal components. The estimated attributable proportion (AP) was used to quantify the interaction effect. Assessment of smoking effects with inclusion of genetic information revealed 53 (in LS) and 34 (in non-LS) SNP-smoking additive interactions at false discovery rate (FDR) below 5%. The lead signals interacting with smoking were rs12132140 (AP = 0.56, 95% CI = 0.22-0.90), p = 1.28e-03) in FCRL1 for LS and rs61780312 (AP = 0.62, 95% CI = 0.28-0.90), p = 3e-04) in IL23R for non-LS. We further identified 16 genomic loci (in LS) and 13 (in non-LS) that interact with cigarette smoking. These findings suggest that sarcoidosis risk is modulated by smoking due to genetic susceptibility. Therefore, patients having certain gene variants, are at a higher risk for the disease. Consideration of individual's genetic predisposition is crucial to quantify effects of smoking in sarcoidosis.


Asunto(s)
Interacción Gen-Ambiente , Proteínas de la Membrana/genética , Receptores de Interleucina/genética , Sarcoidosis/genética , Adulto , Femenino , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Fenotipo , Polimorfismo Genético/genética , Polimorfismo de Nucleótido Simple/genética , Sarcoidosis/epidemiología , Sarcoidosis/patología , Fumar/efectos adversos , Suecia/epidemiología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...