Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Ecol Evol ; 7(9): 1362-1372, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37550509

RESUMEN

As human activities increasingly shape land- and seascapes, understanding human-wildlife interactions is imperative for preserving biodiversity. Habitats are impacted not only by static modifications, such as roads, buildings and other infrastructure, but also by the dynamic movement of people and their vehicles occurring over shorter time scales. Although there is increasing realization that both components of human activity substantially affect wildlife, capturing more dynamic processes in ecological studies has proved challenging. Here we propose a conceptual framework for developing a 'dynamic human footprint' that explicitly incorporates human mobility, providing a key link between anthropogenic stressors and ecological impacts across spatiotemporal scales. Specifically, the dynamic human footprint integrates a range of metrics to fully acknowledge the time-varying nature of human activities and to enable scale-appropriate assessments of their impacts on wildlife behaviour, demography and distributions. We review existing terrestrial and marine human-mobility data products and provide a roadmap for how these could be integrated and extended to enable more comprehensive analyses of human impacts on biodiversity in the Anthropocene.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Ambiente , Actividades Humanas , Transportes , Planeta Tierra , Animales Salvajes , Ecosistema
2.
PLoS One ; 17(10): e0273686, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36260548

RESUMEN

First time migrants (juveniles hereafter) of many species migrate without specific knowledge of non-breeding locations, but experience may aid adults in timing and route decisions because they can migrate more efficiently to their previous non-breeding sites. Consequently, we expect a transition to more efficient migratory behaviour with age, but when and how this happens is little known. We used light-level geolocator data from Cyprus wheatears Oenanthe cypriaca to compare migration timing and route directness between juveniles and adults, and repeatability of their timing and non-breeding locations. We predicted that juveniles would depart and arrive later than adults for both autumn and spring migration; that duration of migration would be greater for juveniles; that routes taken by juveniles would be less direct than those for adults; and that autumn and spring departure timing, and non-breeding locations, would be more repeatable for adults between two years than for juveniles between their first and subsequent migration. We found that juveniles departed significantly later than adults in autumn but there was no difference in arrival timing, and although spring departure timings did not differ, juveniles arrived on the breeding grounds later than adults. Nevertheless, we found no significant age-related difference in the duration of migration in autumn or spring. Yet, juvenile migrations were less direct than those of adults in autumn, but not spring. We found evidence that spring departure timing and non-breeding locations were repeatable for adults but not juveniles. Our findings show that age-related changes in migratory behaviour begin to occur during the first annual cycle demonstrating the potential for early adaptation to environmental variability within an individual's life.


Asunto(s)
Migración Animal , Pájaros Cantores , Animales , Estaciones del Año , Adaptación Fisiológica
3.
Curr Zool ; 68(6): 708-715, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36743231

RESUMEN

One possible hypothesis for the function of post-fledging dispersal is to locate a suitable future breeding area. This post-fledging period may be particularly important in migratory species because they have a limited period to gather information prior to autumn migration, and in protandrous species, males must quickly acquire a territory after returning from spring migration to maximize their fitness. Here we use color-ring resightings to investigate how the post-fledging dispersal movements of the Cyprus wheatear Oenanthe cypriaca, a small migratory passerine, relate to their first breeding territory the following year when they return from migration. We found that males established first breeding territories that were significantly closer to their post-fledging location than to their natal sites or to post-fledging locations of other conspecifics, but these patterns were not apparent in females. Our findings suggest that familiarity with potential breeding sites may be important for juveniles of migratory species, particularly for the sex that acquires and advertises breeding territories. Exploratory dispersal prior to a migrant's first autumn migration may contribute toward its breeding success the following year, further highlighting the importance of early seasonal breeding on fitness and population dynamics more generally.

4.
Curr Biol ; 28(8): R340-R341, 2018 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-29689204

RESUMEN

Long-distance migratory bird populations are likely to be declining because of climate change shifting habitats or anthropogenic habitat loss [1], but this may be mediated by the size of the non-breeding area over which a population spreads (migratory spread), and migration distance (or number of stop-over sites). High migratory spread may make populations more resilient to climate change because they already encompass shifting habitats, but less resilient to uneven habitat loss that may not affect populations with low migratory spread [2] (Figure 1C). As migration distance increases so the probability of encountering a stop-over site with negative environmental change increases [3] (Figure 1D). Consequently, if habitat shift through climate change is the main driver of declines we predict more positive population trends for high spread migrants, but the reverse for outright habitat loss (Figure 1E); we also predict negative population trends for longer distance migrants (Figure 1F). But these relationships may vary between flyways, which differ profoundly in their climate variation, human population change and geography. Here we show that climate change may be more important in Neotropic migrant population declines whereas habitat loss may be more important in the Afro-Palearctic.


Asunto(s)
Distribución Animal/fisiología , Migración Animal/fisiología , Ecosistema , Animales , Aves/metabolismo , Aves/fisiología , Cambio Climático , Dinámica Poblacional/tendencias , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...