Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Chem Phys ; 139(10): 104303, 2013 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-24050340

RESUMEN

In this manuscript, rotational spectra of four new isotopologues of the S-H···π bonded C2H4···H2S complex, i.e., C2D4···H2S, C2D4···D2S, C2D4···HDS, and (13)CCH4···H2S have been reported and analyzed. All isotopologues except C2D4···HDS show a four line pattern whereas a doubling of the transition frequencies was observed for C2D4···HDS. These results together with our previous report on the title complex [M. Goswami, P. K. Mandal, D. J. Ramdass, and E. Arunan, Chem. Phys. Lett. 393(1-3), 22-27 (2004)] confirm that both subunits (C2H4 and H2S) are involved in large amplitude motions leading to a splitting of each rotational transition to a quartet. Further, the results also confirm that the motions which are responsible for the observed splittings involve both monomers. Molecular symmetry group analysis, considering the interchange of equivalent H atoms in H2S and C2H4 could explain the observed four line pattern and their intensities in the microwave spectrum. In addition, hydride stretching fundamentals of the complex were measured using coherence-converted population transfer Fourier Transform Microwave-infrared (IR-MW double resonance) experiments in the S-H and C-H stretch regions. Changes in the tunneling splittings upon vibrational excitation are consistent with the isotopic dependence of pure rotational transitions. A complexation shift of 2.7-6.5 cm(-1) has been observed in the two fundamental S-H stretching modes of the H2S monomer in the complex. Vibrational pre-dissociation in the bound S-H stretch has been detected whereas the instrument-limited line-shapes in other S-H and C-H stretches indicate slower pre-dissociation rate. Some local perturbations in the vibrational spectra have been observed. Two combination bands have been observed corresponding to both the S-H stretching fundamentals and what appears to be the intermolecular stretching mode at 55 cm(-1). The tunneling splitting involved in the rotation of C2H4 unit has been deduced to be 1.5 GHz from the IR-MW results. In addition, ab initio barrier heights derived for different motions of the monomers support the experimental results and provide further insight into the motions causing the splitting.

2.
Annu Rev Phys Chem ; 51: 323-53, 2000.
Artículo en Inglés | MEDLINE | ID: mdl-11031285

RESUMEN

The standard description of the vibrational and rotational motion of polyatomic molecules, as expressed by the distortable rotor/harmonic oscillator approximation, provides an adequate description of the molecular quantum states only in regions of low total state density. When the total state density is large, exceeding 100 states/cm(-1), the vibrational dynamics are "dissipative" and the fundamental process of intramolecular vibrational energy redistribution is operative. The presence of intramolecular vibrational energy redistribution leads to molecular quantum states of a qualitatively different nature. With respect to a normal-mode vibrational basis, these quantum states are "highly mixed" in their vibrational character and represent nuclear motion that is a combination of all the normal-mode motions. This review describes frequency domain spectroscopy techniques designed to probe the vibrational, rotational, and structural composition of these eigenstates. Recent work that investigates spectroscopy between highly mixed states is also reviewed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA