Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(17): e37054, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39286220

RESUMEN

Modern cancer diagnostics and treatment options have greatly improved survival rates; the illness remains a major cause of mortality worldwide. Current treatments for cancer, such as chemotherapy, are not cancer-specific and may cause harm to healthy cells; therefore, it is imperative that new drugs for cancer be developed that are both safe and effective. It has been found that lactic acid bacteria (LAB) have the potential to produce bacteriocins, which could potentially offer a promising alternative for cancer treatment. They have been shown in several studies to be effective against cancer cells while having no effect on healthy cells. More research is needed to fully understand the potential of LAB bacteriocins as anti-cancer medicines, to find the appropriate dose and delivery route, and to conduct clinical trials to evaluate the effectiveness and safety of the products in human patients, as is suggested by this work. Furthermore, LAB bacteriocins may evolve into a significant new class of anti-cancer drugs and food products. Patients with cancer may have a safe and effective alternative treatment option in the form of anti-cancer foods and drugs. Therefore, the aim of this study is to provide an in-depth analysis of the recent breakthroughs and potential future technical advancements of significant bacteriocins that are produced by LAB, how these bacteriocins function, and how these bacteriocins may be utilized as an anti-cancer agent. In addition, the current analysis emphasizes the significant constraints and boundaries that bacteriocins face when they are used as an anti-cancer factor.

2.
Saudi J Biol Sci ; 30(7): 103679, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37305654

RESUMEN

Tofu wastewater can be utilized as a substrate for microorganisms that produce single-cell proteins (SCPs). Because different microorganisms have different cellular components, the composition of SCPs varies. Electro-stimulation has the potential to speed up fermentation and increase product yield. The goal of this study was to find the best way to produce SCPs from Aspergillus awamori, Rhizopus oryzae, and Saccharomyces cerevisiae in the tofu wastewater substrate using electro-stimulation. The experimental method was used in the study, the data were analyzed using independent t-test statistical analysis, and the best treatment was identified using the effective index method. This treatment consisted of producing SCP with electro-stimulation of -1.5 V and without electro-stimulation for 72 h for the yeast and 96 h for the mold at 25 °C in tofu wastewater that had already been conditioned to a pH of 5. The parameters measured included measurement of population of microorganism, change in pH, dry biomass weight, carbohydrate content, and protein content. Electro-stimulation reduced the optimum fermentation time of A. awamori SCP from 56 to 32 h, resulting in 0.0406 g/50 mL of dry biomass, 30.09% carbohydrate content, and 6.86% protein content. Meanwhile, the optimal fermentation time on R. oryzae and S. cerevisiae were not accelerated by electro-stimulation. The best treatment was A. awamori without electro-stimulation, which produced 0.0931 g/50 mL of dry biomass, 20.29% carbohydrate, and 7.55% protein.

3.
Saudi J Biol Sci ; 29(3): 1565-1576, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35280596

RESUMEN

Aroma and flavour represent the key components of food that improves the organoleptic characteristics of food and enhances the acceptability of food to consumers. Commercial manufacturing of aromatic and flavouring compounds is from the industry's microbial source, but since time immemorial, its concept has been behind human practices. The interest in microbial flavour compounds has developed in the past several decades because of its sustainable way to supply natural additives for the food processing sector. There are also numerous health benefits from microbial bioprocess products, ranging from antibiotics to fermented functional foods. This review discusses recent developments and advancements in many microbial aromatic and flavouring compounds, their biosynthesis and production by diverse types of microorganisms, their use in the food industry, and a brief overview of their health benefits for customers.

4.
Food Res Int ; 150(Pt A): 110746, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34865764

RESUMEN

Application of high-value algal metabolites (HVAMs) in cosmetics, additives, pigments, foods and medicines are very important. These HVAMs can be obtained from the cultivation of micro- and macro-algae. These metabolites can benefit human and animal health in a physiological and nutritional manner. However, because of conventional extraction methods and their energy and the use of pollutant solvents, the availability of HVAMs from algae remains insufficient. Receiving their sustainability and environmental benefits have recently made green extraction technologies for HVAM extractions more desirable. But very little information is available about the technology of green extraction of algae from these HVAM. This review, therefore, highlights the supercritical fluid extraction (SCFE) as principal green extraction technologyand theirideal parameters for extracting HVAMs. In first, general information is provided concerning the HVAMs and their components of macro and micro origin. The review also includes a description of SCFE technology's properties, instrumentation operation, solvents used, and the merits and demerits. Moreover, there are several HVAMs associated with their numerous high-level biological activities which include high-level antioxidant, anti-inflammatory, anticancer and antimicrobial activity and have potential health-beneficial effects in humans since they are all HVAMs, such as foods and nutraceuticals. Finally, it provides future insights, obstacles, and suggestions for selecting the right technologies for extraction.


Asunto(s)
Cromatografía con Fluido Supercrítico , Animales , Antioxidantes , Suplementos Dietéticos , Humanos , Plantas , Tecnología
5.
Saudi J Biol Sci ; 28(12): 6765-6773, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34866975

RESUMEN

ß-glucan is a natural polysaccharide derivative composed of a group of glucose monomers with ß-glycoside bonds that can be synthesized intra- or extra-cellular by various microorganisms such as yeasts, bacteria, and moulds. The study aimed to discover the potential of various microorganisms such as Saccharomyces cerevisiae, Aspergillus oryzae, Xanthomonas campestris, and Bacillus natto in producing ß-glucan. The experimental method used and the data were analyzed descriptively. The four microorganisms above were cultured under a submerged state in Yeast glucose (YG) broth for 120 h at 30 °C with 200 rpm agitation. During the growth, several parameters were examined including total population by optical density, the pH, and glucose contents of growth media. ß-glucan was extracted using acid-alkaline methods from the growth media then the weight was measured. The results showed that S. cerevisiae, A. oryzae X. campestris, and B. natto were prospective for ß-glucans production in submerged fermentation up to 120 h. The highest ß-glucans yield was shown by B. natto (20.38%) with the ß-glucans mass of 1.345 ± 0.08 mg and globular diameter of 600 µm. The highest ß-glucan mass was achieved by A. oryzae of 82.5 ± 0.03 mg with the total population in optical density of 0.1246, a final glucose level of 769 ppm, the pH of 6.67, and yield of 13.97% with a globular diameter of 1400 µm.

6.
Front Nutr ; 8: 747956, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34621776

RESUMEN

An entirely unknown species of coronavirus (COVID-19) outbreak occurred in December 2019. COVID-19 has already affected more than 180 million people causing ~3.91 million deaths globally till the end of June 2021. During this emergency, the food nutraceuticals can be a potential therapeutic candidate. Curcumin is the natural and safe bioactive compound of the turmeric (Curcuma longa L.) plant and is known to possess potent anti-microbial and immuno-modulatory properties. This review paper covers the various extraction and quantification techniques of curcumin and its usage to produce functional food. The potential of curcumin in boosting the immune system has also been explored. The review will help develop insight and new knowledge about curcumin's role as an immune-booster and therapeutic agent against COVID-19. The manuscript will also encourage and assist the scientists and researchers who have an association with drug development, pharmacology, functional foods, and nutraceuticals to develop curcumin-based formulations.

7.
Front Nutr ; 8: 673174, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34095193

RESUMEN

In December 2019, the severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2)-a novel coronavirus was identified which was quickly distributed to more than 100 countries around the world. There are currently no approved treatments available but only a few preventive measures are available. Among them, maintaining strong immunity through the intake of functional foods is a sustainable solution to resist the virus attack. For this, bioactive compounds (BACs) are delivered safely inside the body through encapsulated food items. Encapsulated food products have benefits such as high stability and bioavailability, sustained release of functional compounds; inhibit the undesired interaction, and high antimicrobial and antioxidant activity. Several BACs such as ω-3 fatty acid, curcumin, vitamins, essential oils, antimicrobials, and probiotic bacteria can be encapsulated which exhibit immunological activity through different mechanisms. These encapsulated compounds can be recommended for use by various researchers, scientists, and industrial peoples to develop functional foods that can improve immunity to withstand the coronavirus disease 2019 (COVID-19) outbreak in the future. Encapsulated BACs, upon incorporation into food, offer increased functionality and facilitate their potential use as an immunity booster. This review paper aims to target various encapsulated food products and their role in improving the immunity system. The bioactive components like antioxidants, minerals, vitamins, polyphenols, omega (ω)-3 fatty acids, lycopene, probiotics, etc. which boost the immunity and may be a potential measure to prevent COVID-19 outbreak were comprehensively discussed. This article also highlights the potential mechanisms; a BAC undergoes, to improve the immune system.

8.
Food Res Int ; 133: 109136, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32466929

RESUMEN

Curdlan - a homopolysaccharide is comprised of glucose using ß-1,3-glycosidic bond and produced by different types of microorganisms as exopolysaccharide. Curdlan gel is stable during freezing and thawing processes which find several applications in food and pharmaceutical industries. It acts as a prebiotic, stabilizer and water-holding, viscosifying and texturing agent. Additionally, curdlan gel is used as a food factor to develop the new products e.g. milk fat substitute, non-fat whipped cream, retorting (freeze-drying) process of Tofu, low-fat sausage, and low-fat hamburger. However, a great variation exists among different countries regarding the regulatory aspects of curdlan as food additives, dietary components or prebiotic substances. Therefore, the present review paper aims to discuss safety issues and the establishment of common guidelines and legislation globally, focusing on the use the applications of curdlan in the food sector including the development of noodles, meat-based products, and fat-free dairy products. This review analyzes and describes in detail the potential of curdlan as a sustainable alternative additive in health and food industries, emphasizing on the chemical composition, production, properties, and potential applications.


Asunto(s)
Aditivos Alimentarios/análisis , Industria de Alimentos/legislación & jurisprudencia , Prebióticos/análisis , beta-Glucanos/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA