Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
bioRxiv ; 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38712039

RESUMEN

Neuroblastoma is a common pediatric cancer, where preclinical studies suggest that a mesenchymal-like gene expression program contributes to chemotherapy resistance. However, clinical outcomes remain poor, implying we need a better understanding of the relationship between patient tumor heterogeneity and preclinical models. Here, we generated single-cell RNA-seq maps of neuroblastoma cell lines, patient-derived xenograft models (PDX), and a genetically engineered mouse model (GEMM). We developed an unsupervised machine learning approach ('automatic consensus nonnegative matrix factorization' (acNMF)) to compare the gene expression programs found in preclinical models to a large cohort of patient tumors. We confirmed a weakly expressed, mesenchymal-like program in otherwise adrenergic cancer cells in some pre-treated high-risk patient tumors, but this appears distinct from the presumptive drug-resistance mesenchymal programs evident in cell lines. Surprisingly however, this weak-mesenchymal-like program was maintained in PDX and could be chemotherapy-induced in our GEMM after only 24 hours, suggesting an uncharacterized therapy-escape mechanism. Collectively, our findings improve the understanding of how neuroblastoma patient tumor heterogeneity is reflected in preclinical models, provides a comprehensive integrated resource, and a generalizable set of computational methodologies for the joint analysis of clinical and pre-clinical single-cell RNA-seq datasets.

2.
Cancer Res ; 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38581448

RESUMEN

Single-cell RNA-sequencing (scRNA-seq) greatly advanced the understanding of intratumoral heterogeneity by identifying distinct cancer cell subpopulations. However, translating biological differences into treatment strategies is challenging due to a lack of tools to facilitate efficient drug discovery that tackles heterogeneous tumors. Developing such approaches requires accurate prediction of drug response at the single-cell level to offer therapeutic options to specific cell subpopulations. Here, we developed a transparent computational framework (nicknamed scIDUC) to predict therapeutic efficacies on an individual-cell basis by integrating single-cell transcriptomic profiles with large, data-rich pan-cancer cell line screening datasets. This method achieved high accuracy in separating cells into their correct cellular drug response statuses. In three distinct prospective tests covering different diseases (rhabdomyosarcoma, pancreatic ductal adenocarcinoma, and castration-resistant prostate cancer), the predicted results using scIDUC were accurate and mirrored biological expectations. In the first two tests, the framework identified drugs for cell subpopulations that were resistant to standard-of-care (SOC) therapies due to intrinsic resistance or tumor microenvironmental effects, and the results showed high consistency with experimental findings from the original studies. In the third test using newly generated SOC therapy resistant cell lines, scIDUC identified efficacious drugs for the resistant line, and the predictions were validated with in vitro experiments. Together, this study demonstrates the potential of scIDUC to quickly translate scRNA-seq data into drug responses for individual cells, displaying the potential as a tool to improve treatment of heterogenous tumors.

3.
bioRxiv ; 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38260392

RESUMEN

Neuroblastoma is a pediatric cancer arising from the developing sympathoadrenal lineage with complex inter- and intra-tumoral heterogeneity. To chart this complexity, we generated a comprehensive cell atlas of 55 neuroblastoma patient tumors, collected from two pediatric cancer institutions, spanning a range of clinical, genetic, and histologic features. Our atlas combines single-cell/nucleus RNA-seq (sc/scRNA-seq), bulk RNA-seq, whole exome sequencing, DNA methylation profiling, spatial transcriptomics, and two spatial proteomic methods. Sc/snRNA-seq revealed three malignant cell states with features of sympathoadrenal lineage development. All of the neuroblastomas had malignant cells that resembled sympathoblasts and the more differentiated adrenergic cells. A subset of tumors had malignant cells in a mesenchymal cell state with molecular features of Schwann cell precursors. DNA methylation profiles defined four groupings of patients, which differ in the degree of malignant cell heterogeneity and clinical outcomes. Using spatial proteomics, we found that neuroblastomas are spatially compartmentalized, with malignant tumor cells sequestered away from immune cells. Finally, we identify spatially restricted signaling patterns in immune cells from spatial transcriptomics. To facilitate the visualization and analysis of our atlas as a resource for further research in neuroblastoma, single cell, and spatial-omics, all data are shared through the Human Tumor Atlas Network Data Commons at www.humantumoratlas.org.

4.
bioRxiv ; 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37961545

RESUMEN

Single-cell RNA sequencing greatly advanced our understanding of intratumoral heterogeneity through identifying tumor subpopulations with distinct biologies. However, translating biological differences into treatment strategies is challenging, as we still lack tools to facilitate efficient drug discovery that tackles heterogeneous tumors. One key component of such approaches tackles accurate prediction of drug response at the single-cell level to offer therapeutic options to specific cell subpopulations. Here, we present a transparent computational framework (nicknamed scIDUC) to predict therapeutic efficacies on an individual-cell basis by integrating single-cell transcriptomic profiles with large, data-rich pan-cancer cell line screening datasets. Our method achieves high accuracy, with predicted sensitivities easily able to separate cells into their true cellular drug resistance status as measured by effect size (Cohen's d > 1.0). More importantly, we examine our method's utility with three distinct prospective tests covering different diseases (rhabdomyosarcoma, pancreatic ductal adenocarcinoma, and castration-resistant prostate cancer), and in each our predicted results are accurate and mirrored biological expectations. In the first two, we identified drugs for cell subpopulations that are resistant to standard-of-care (SOC) therapies due to intrinsic resistance or effects of tumor microenvironments. Our results showed high consistency with experimental findings from the original studies. In the third test, we generated SOC therapy resistant cell lines, used scIDUC to identify efficacious drugs for the resistant line, and validated the predictions with in-vitro experiments. Together, scIDUC quickly translates scRNA-seq data into drug response for individual cells, displaying the potential as a first-line tool for nuanced and heterogeneity-aware drug discovery.

5.
Nat Cancer ; 3(10): 1228-1246, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36138189

RESUMEN

Apart from the anti-GD2 antibody, immunotherapy for neuroblastoma has had limited success due to immune evasion mechanisms, coupled with an incomplete understanding of predictors of response. Here, from bulk and single-cell transcriptomic analyses, we identify a subset of neuroblastomas enriched for transcripts associated with immune activation and inhibition and show that these are predominantly characterized by gene expression signatures of the mesenchymal lineage state. By contrast, tumors expressing adrenergic lineage signatures are less immunogenic. The inherent presence or induction of the mesenchymal state through transcriptional reprogramming or therapy resistance is accompanied by innate and adaptive immune gene activation through epigenetic remodeling. Mesenchymal lineage cells promote T cell infiltration by secreting inflammatory cytokines, are efficiently targeted by cytotoxic T and natural killer cells and respond to immune checkpoint blockade. Together, we demonstrate that distinct immunogenic phenotypes define the divergent lineage states of neuroblastoma and highlight the immunogenic potential of the mesenchymal lineage.


Asunto(s)
Adrenérgicos , Neuroblastoma , Humanos , Linaje de la Célula/genética , Inhibidores de Puntos de Control Inmunológico , Neuroblastoma/genética , Citocinas/genética , Fenotipo
6.
Neuron ; 110(18): 2916-2928, 2022 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-35985323

RESUMEN

Neuroblastoma is a leading cause of cancer-related death in children. Accumulated data suggest that differentiation arrest of the neural-crest-derived sympathoadrenal lineage contributes to neuroblastoma formation. The developmental arrest of these cell types explains many biological features of the disease, including its cellular heterogeneity, mutational spectrum, spontaneous regression, and response to drugs that induce tumor cell differentiation. In this review, we provide evidence that supports the notion that arrested neural-crest-derived progenitor cells give rise to neuroblastoma and discuss how this concept could be exploited for clinical management of the disease.


Asunto(s)
Neuroblastoma , Diferenciación Celular , Niño , Humanos , Cresta Neural/metabolismo , Cresta Neural/patología , Neuroblastoma/metabolismo , Neuroblastoma/patología
7.
Dev Cell ; 57(10): 1226-1240.e8, 2022 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-35483358

RESUMEN

Rhabdomyosarcoma (RMS) is a pediatric cancer with features of skeletal muscle; patients with unresectable or metastatic RMS fare poorly due to high rates of disease recurrence. Here, we use single-cell and single-nucleus RNA sequencing to show that RMS tumors recapitulate the spectrum of embryonal myogenesis. Using matched patient samples from a clinical trial and orthotopic patient-derived xenografts (O-PDXs), we show that chemotherapy eliminates the most proliferative component with features of myoblasts within embryonal RMS; after treatment, the immature population with features of paraxial mesoderm expands to reconstitute the developmental hierarchy of the original tumor. We discovered that this paraxial mesoderm population is dependent on EGFR signaling and is sensitive to EGFR inhibitors. Taken together, these data serve as a proof of concept that targeting each developmental state in embryonal RMS is an effective strategy for improving outcomes by preventing disease recurrence.


Asunto(s)
Rabdomiosarcoma Embrionario , Rabdomiosarcoma , Niño , Resistencia a Medicamentos , Receptores ErbB , Humanos , Desarrollo de Músculos/genética , Recurrencia Local de Neoplasia , Rabdomiosarcoma/tratamiento farmacológico , Rabdomiosarcoma/genética , Rabdomiosarcoma/patología , Rabdomiosarcoma Embrionario/tratamiento farmacológico , Rabdomiosarcoma Embrionario/genética , Rabdomiosarcoma Embrionario/patología
8.
Nat Commun ; 13(1): 253, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-35017532

RESUMEN

Super-enhancers are expansive regions of genomic DNA comprised of multiple putative enhancers that contribute to the dynamic gene expression patterns during development. This is particularly important in neurogenesis because many essential transcription factors have complex developmental stage- and cell-type specific expression patterns across the central nervous system. In the developing retina, Vsx2 is expressed in retinal progenitor cells and is maintained in differentiated bipolar neurons and Müller glia. A single super-enhancer controls this complex and dynamic pattern of expression. Here we show that deletion of one region disrupts retinal progenitor cell proliferation but does not affect cell fate specification. The deletion of another region has no effect on retinal progenitor cell proliferation but instead leads to a complete loss of bipolar neurons. This prototypical super-enhancer may serve as a model for dissecting the complex gene expression patterns for neurogenic transcription factors during development. Moreover, it provides a unique opportunity to alter expression of individual transcription factors in particular cell types at specific stages of development. This provides a deeper understanding of function that cannot be achieved with traditional knockout mouse approaches.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Neurogénesis/fisiología , Secuencias Reguladoras de Ácidos Nucleicos , Retina/metabolismo , Animales , Sistemas CRISPR-Cas , Diferenciación Celular/genética , Proliferación Celular , Epigenómica , Femenino , Proteínas de Homeodominio/química , Proteínas de Homeodominio/genética , Masculino , Ratones , Neurogénesis/genética , Neuroglía/fisiología , Neuronas/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos/genética , Células Madre/fisiología , Factores de Transcripción/química , Factores de Transcripción/fisiología
9.
Cancer Discov ; 12(3): 730-751, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34772733

RESUMEN

Gene expression is regulated by promoters and enhancers marked by histone H3 lysine 27 acetylation (H3K27ac), which is established by the paralogous histone acetyltransferases (HAT) EP300 and CBP. These enzymes display overlapping regulatory roles in untransformed cells, but less characterized roles in cancer cells. We demonstrate that the majority of high-risk pediatric neuroblastoma (NB) depends on EP300, whereas CBP has a limited role. EP300 controls enhancer acetylation by interacting with TFAP2ß, a transcription factor member of the lineage-defining transcriptional core regulatory circuitry (CRC) in NB. To disrupt EP300, we developed a proteolysis-targeting chimera (PROTAC) compound termed "JQAD1" that selectively targets EP300 for degradation. JQAD1 treatment causes loss of H3K27ac at CRC enhancers and rapid NB apoptosis, with limited toxicity to untransformed cells where CBP may compensate. Furthermore, JQAD1 activity is critically determined by cereblon (CRBN) expression across NB cells. SIGNIFICANCE: EP300, but not CBP, controls oncogenic CRC-driven transcription in high-risk NB by binding TFAP2ß. We developed JQAD1, a CRBN-dependent PROTAC degrader with preferential activity against EP300 and demonstrated its activity in NB. JQAD1 has limited toxicity to untransformed cells and is effective in vivo in a CRBN-dependent manner. This article is highlighted in the In This Issue feature, p. 587.


Asunto(s)
Neuroblastoma , Secuencias Reguladoras de Ácidos Nucleicos , Acetilación , Niño , Proteína p300 Asociada a E1A/genética , Humanos , Proteína Proto-Oncogénica N-Myc/genética , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/genética , Oncogenes
10.
Cancer Immunol Immunother ; 70(3): 721-732, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32915319

RESUMEN

Faithful tumor mouse models are fundamental research tools to advance the field of immuno-oncology (IO). This is particularly relevant in diseases with low incidence, as in the case of pediatric malignancies, that rely on pre-clinical therapeutic development. However, conventional syngeneic and genetically engineered mouse models fail to recapitulate the tumor heterogeneity and microenvironmental complexity of human pathology that are essential determinants of cancer-directed immunity. Here, we characterize a novel mouse model that supports human natural killer (NK) cell development and engraftment of neuroblastoma orthotopic patient-derived xenograft (O-PDX) for pre-clinical antibody and cytokine testing. Using cytotoxicity assays, single-cell RNA-sequencing, and multi-color flow cytometry, we demonstrate that NK cells that develop in the humanized mice are fully licensed to execute NK cell cytotoxicity, permit human tumor engraftment, but can be therapeutically redirected to induce antibody-dependent cell-mediated cytotoxicity (ADCC). Although these cells share phenotypic and molecular features with healthy controls, we noted that they lacked an NK cell subset, termed activated NK cells, that is characterized by differentially expressed genes that are induced by cytokine activation. Because this subset of genes is also downregulated in patients with neuroblastoma compared to healthy controls, we hypothesize that this finding could be due to tumor-mediated suppressive effects. Thus, despite its technical complexity, this humanized patient-derived xenograft mouse model could serve as a faithful system for future testing of IO applications and studies of underlying immunologic processes.


Asunto(s)
Anticuerpos Monoclonales Humanizados/farmacología , Antineoplásicos Inmunológicos/farmacología , Neuroblastoma/inmunología , Animales , Citotoxicidad Celular Dependiente de Anticuerpos/inmunología , Trasplante de Médula Ósea , Estudios de Casos y Controles , Línea Celular Tumoral , Terapia Combinada , Modelos Animales de Enfermedad , Femenino , Humanos , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Masculino , Ratones , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/patología , Resultado del Tratamiento , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Nat Med ; 26(5): 792-802, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32405060

RESUMEN

Single-cell genomics is essential to chart tumor ecosystems. Although single-cell RNA-Seq (scRNA-Seq) profiles RNA from cells dissociated from fresh tumors, single-nucleus RNA-Seq (snRNA-Seq) is needed to profile frozen or hard-to-dissociate tumors. Each requires customization to different tissue and tumor types, posing a barrier to adoption. Here, we have developed a systematic toolbox for profiling fresh and frozen clinical tumor samples using scRNA-Seq and snRNA-Seq, respectively. We analyzed 216,490 cells and nuclei from 40 samples across 23 specimens spanning eight tumor types of varying tissue and sample characteristics. We evaluated protocols by cell and nucleus quality, recovery rate and cellular composition. scRNA-Seq and snRNA-Seq from matched samples recovered the same cell types, but at different proportions. Our work provides guidance for studies in a broad range of tumors, including criteria for testing and selecting methods from the toolbox for other tumors, thus paving the way for charting tumor atlases.


Asunto(s)
Algoritmos , Núcleo Celular/genética , Genómica/métodos , Neoplasias/genética , RNA-Seq/métodos , Análisis de la Célula Individual/métodos , Adulto , Animales , Núcleo Celular/química , Núcleo Celular/metabolismo , Niño , Biología Computacional/métodos , Femenino , Congelación , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Ratones Noqueados , Ratones Desnudos , Neoplasias/metabolismo , Neoplasias/patología , Análisis de Secuencia de ARN/métodos , Células Tumorales Cultivadas , Secuenciación del Exoma/métodos
13.
Clin Cancer Res ; 22(15): 3894-902, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-26979391

RESUMEN

PURPOSE: DNA repair defects have been previously reported in myeloproliferative neoplasms (MPN). Inhibitors of PARP have shown activity in solid tumors with defects in homologous recombination (HR). This study was performed to assess MPN sensitivity to PARP inhibitors ex vivo EXPERIMENTAL DESIGN: HR pathway integrity in circulating myeloid cells was evaluated by assessing the formation of RAD51 foci after treatment with ionizing radiation or PARP inhibitors. Sensitivity of MPN erythroid and myeloid progenitors to PARP inhibitors was evaluated using colony formation assays. RESULTS: Six of 14 MPN primary samples had reduced formation of RAD51 foci after exposure to ionizing radiation, suggesting impaired HR. This phenotype was not associated with a specific MPN subtype, JAK2 mutation status, or karyotype. MPN samples showed increased sensitivity to the PARP inhibitors veliparib and olaparib compared with normal myeloid progenitors. This hypersensitivity, which was most pronounced in samples deficient in DNA damage-induced RAD51 foci, was observed predominantly in samples from patients with diagnoses of chronic myelogenous leukemia, chronic myelomonocytic leukemia, or unspecified myelodysplastic/MPN overlap syndromes. CONCLUSIONS: Like other neoplasms with HR defects, MPNs exhibit PARP inhibitor hypersensitivity compared with normal marrow. These results suggest that further preclinical and possibly clinical study of PARP inhibitors in MPNs is warranted. Clin Cancer Res; 22(15); 3894-902. ©2016 AACR.


Asunto(s)
Antineoplásicos/efectos adversos , Hipersensibilidad a las Drogas/etiología , Trastornos Mieloproliferativos/complicaciones , Inhibidores de Poli(ADP-Ribosa) Polimerasas/efectos adversos , Antineoplásicos/uso terapéutico , Proteína BRCA1/genética , Bencimidazoles/efectos adversos , Bencimidazoles/farmacología , Daño del ADN , Metilación de ADN , Reparación del ADN , Tolerancia a Medicamentos/genética , Genómica/métodos , Humanos , Janus Quinasa 2/genética , Mutación , Trastornos Mieloproliferativos/diagnóstico , Trastornos Mieloproliferativos/tratamiento farmacológico , Trastornos Mieloproliferativos/genética , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo
14.
Nucleic Acids Res ; 44(6): 2816-26, 2016 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-26917015

RESUMEN

A number of established and investigational anticancer drugs slow the religation step of DNA topoisomerase I (topo I). These agents induce cytotoxicity by stabilizing topo I-DNA covalent complexes, which in turn interact with advancing replication forks or transcription complexes to generate lethal lesions. Despite the importance of topo I-DNA covalent complexes, it has been difficult to detect these lesions within intact cells and tumors. Here, we report development of a monoclonal antibody that specifically recognizes covalent topo I-DNA complexes, but not free topo I or DNA, by immunoblotting, immunofluorescence or flow cytometry. Utilizing this antibody, we demonstrate readily detectable topo I-DNA covalent complexes after treatment with camptothecins, indenoisoquinolines and cisplatin but not nucleoside analogues. Topotecan-induced topo I-DNA complexes peak at 15-30 min after drug addition and then decrease, whereas indotecan-induced complexes persist for at least 4 h. Interestingly, simultaneous staining for covalent topo I-DNA complexes, phospho-H2AX and Rad51 suggests that topotecan-induced DNA double-strand breaks occur at sites distinct from stabilized topo I-DNA covalent complexes. These studies not only provide new insight into the action of topo I-directed agents, but also illustrate a strategy that can be applied to study additional topoisomerases and their inhibitors in vitro and in vivo.


Asunto(s)
Anticuerpos Monoclonales/biosíntesis , Antineoplásicos Fitogénicos/farmacología , ADN-Topoisomerasas de Tipo I/genética , ADN/genética , Regulación Neoplásica de la Expresión Génica , Inhibidores de Topoisomerasa I/farmacología , Secuencia de Aminoácidos , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/aislamiento & purificación , Apoptosis/efectos de los fármacos , Benzodioxoles/farmacología , Línea Celular Tumoral , Cisplatino/farmacología , ADN/metabolismo , Roturas del ADN de Doble Cadena , ADN-Topoisomerasas de Tipo I/metabolismo , Células HCT116 , Histonas/genética , Histonas/metabolismo , Humanos , Isoquinolinas/farmacología , Células K562 , Ratones , Datos de Secuencia Molecular , Unión Proteica/efectos de los fármacos , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Alineación de Secuencia , Relación Estructura-Actividad , Topotecan/farmacología
15.
Front Oncol ; 3: 228, 2013 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-24062981

RESUMEN

Poly(ADP-ribose) polymerase 1 (PARP1) is an important component of the base excision repair (BER) pathway as well as a regulator of homologous recombination (HR) and non-homologous end-joining (NHEJ). Previous studies have demonstrated that treatment of HR-deficient cells with PARP inhibitors results in stalled and collapsed replication forks. Consequently, HR-deficient cells are extremely sensitive to PARP inhibitors. Several explanations have been advanced to explain this so-called synthetic lethality between HR deficiency and PARP inhibition: (i) reduction of BER activity leading to enhanced DNA double-strand breaks, which accumulate in the absence of HR; (ii) trapping of inhibited PARP1 at sites of DNA damage, which prevents access of other repair proteins; (iii) failure to initiate HR by poly(ADP-ribose) polymer-dependent BRCA1 recruitment; and (iv) activation of the NHEJ pathway, which selectively induces error-prone repair in HR-deficient cells. Here we review evidence regarding these various explanations for the ability of PARP inhibitors to selectively kill HR-deficient cancer cells and discuss their potential implications.

16.
Elife ; 1: e00387, 2012 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-23256047

RESUMEN

A new mechanism involving cleavage of a transcription factor called CREB3L1 has been proposed to explain the anti-tumour effects of doxorubicin.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , Biomarcadores de Tumor/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Doxorrubicina/farmacología , Regulación Neoplásica de la Expresión Génica , Proteínas del Tejido Nervioso/genética , Animales , Humanos
17.
Clin Cancer Res ; 18(6): 1655-62, 2012 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-22291137

RESUMEN

PURPOSE: Poly(ADP-ribose) polymerase (PARP) inhibitors are undergoing extensive clinical testing for their single-agent activity in homologous recombination (HR)-deficient tumors and ability to enhance the action of certain DNA-damaging agents. Compared with other PARP inhibitors in development, iniparib (4-iodo-3-nitrobenzamide) is notable for its simple structure and the reported ability of its intracellular metabolite 4-iodo-3-nitrosobenzamide to covalently inhibit PARP1 under cell-free conditions. The present preclinical studies were conducted to compare the actions iniparib with the more extensively characterized PARP inhibitors olaparib and veliparib. EXPERIMENTAL DESIGN: The abilities of iniparib, olaparib, and veliparib to (i) selectively induce apoptosis or inhibit colony formation in HR-deficient cell lines, (ii) selectively sensitize HR-proficient cells to topoisomerase I poisons, and (iii) inhibit formation of poly(ADP-ribose) polymer (pADPr) in intact cells were compared. RESULTS: Consistent with earlier reports, olaparib and veliparib selectively induced apoptosis and inhibited colony formation in cells lacking BRCA2 or ATM. Moreover, like earlier generation PARP inhibitors, olaparib and veliparib sensitized cells to the topoisomerase I poisons camptothecin and topotecan. Finally, olaparib and veliparib inhibited formation of pADPr in intact cells. In contrast, iniparib exhibited little or no ability to selectively kill HR-deficient cells, sensitize cells to topoisomerase I poisons, or inhibit pADPr formation in situ. In further experiments, iniparib also failed to sensitize cells to cisplatin, gemcitabine, or paclitaxel. CONCLUSIONS: While iniparib kills normal and neoplastic cells at high (>40 µmol/L) concentrations, its effects are unlikely to reflect PARP inhibition and should not be used to guide decisions about other PARP inhibitors.


Asunto(s)
Antineoplásicos/farmacología , Benzamidas/farmacología , Bencimidazoles/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Animales , Apoptosis/efectos de los fármacos , Línea Celular , Línea Celular Tumoral , Evaluación Preclínica de Medicamentos , Recombinación Homóloga , Humanos , Ratones , Ftalazinas/farmacología , Piperazinas/farmacología , Inhibidores de Topoisomerasa I/farmacología
18.
J Biol Chem ; 287(6): 4198-210, 2012 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-22158865

RESUMEN

Poly(ADP-ribose) polymerase-1 (PARP1) plays critical roles in the regulation of DNA repair. Accordingly, small molecule inhibitors of PARP are being developed as agents that could modulate the activity of genotoxic chemotherapy, such as topoisomerase I poisons. In this study we evaluated the ability of the PARP inhibitor veliparib to enhance the cytotoxicity of the topoisomerase I poisons topotecan and camptothecin (CPT). Veliparib increased the cell cycle and cytotoxic effects of topotecan in multiple cell line models. Importantly, this sensitization occurred at veliparib concentrations far below those required to substantially inhibit poly(ADP-ribose) polymer synthesis and at least an order of magnitude lower than those involved in selective killing of homologous recombination-deficient cells. Further studies demonstrated that veliparib enhanced the effects of CPT in wild-type mouse embryonic fibroblasts (MEFs) but not Parp1(-/-) MEFs, confirming that PARP1 is the critical target for this sensitization. Importantly, parental and Parp1(-/-) MEFs had indistinguishable CPT sensitivities, ruling out models in which PARP1 catalytic activity plays a role in protecting cells from topoisomerase I poisons. To the contrary, cells were sensitized to CPT in a veliparib-independent manner upon transfection with PARP1 E988K, which lacks catalytic activity, or the isolated PARP1 DNA binding domain. These results are consistent with a model in which small molecule inhibitors convert PARP1 into a protein that potentiates the effects of topoisomerase I poisons by binding to damaged DNA and preventing its normal repair.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , ADN-Topoisomerasas de Tipo I , Neoplasias/tratamiento farmacológico , Neoplasias/enzimología , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Animales , Bencimidazoles/farmacología , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Embrión de Mamíferos/enzimología , Embrión de Mamíferos/patología , Fibroblastos/enzimología , Fibroblastos/patología , Humanos , Ratones , Ratones Noqueados , Neoplasias/genética , Neoplasias/patología , Poli(ADP-Ribosa) Polimerasa-1 , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , Inhibidores de Topoisomerasa I/farmacología , Topotecan/farmacología
19.
Cancer Res ; 71(14): 4944-54, 2011 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-21613406

RESUMEN

5-Fluorouracil (5-FU) and 5-fluorodeoxyuridine (FdUrd, floxuridine) have activity in multiple tumors, and both agents undergo intracellular processing to active metabolites that disrupt RNA and DNA metabolism. These agents cause imbalances in deoxynucleotide triphosphate levels and the accumulation of uracil and 5-FU in the genome, events that activate the ATR- and ATM-dependent checkpoint signaling pathways and the base excision repair (BER) pathway. Here, we assessed which DNA damage response and repair processes influence 5-FU and FdUrd toxicity in ovarian cancer cells. These studies revealed that disabling the ATM, ATR, or BER pathways using small inhibitory RNAs did not affect 5-FU cytotoxicity. In stark contrast, ATR and a functional BER pathway protected FdUrd-treated cells. Consistent with a role for the BER pathway, the poly(ADP-ribose) polymerase (PARP) inhibitors ABT-888 (veliparib) and AZD2281 (olaparib) markedly synergized with FdUrd but not with 5-FU in ovarian cancer cell lines. Furthermore, ABT-888 synergized with FdUrd far more effectively than other agents commonly used to treat ovarian cancer. These findings underscore differences in the cytotoxic mechanisms of 5-FU and FdUrd and suggest that combining FdUrd and PARP inhibitors may be an innovative therapeutic strategy for ovarian tumors.


Asunto(s)
Floxuridina/farmacología , Fluorouracilo/farmacología , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/enzimología , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Antimetabolitos Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Proteínas de la Ataxia Telangiectasia Mutada , Bencimidazoles/farmacología , Ciclo Celular/efectos de los fármacos , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Quinasa de Punto de Control 2 , Reparación del ADN , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/metabolismo , Sinergismo Farmacológico , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Femenino , Humanos , Neoplasias Ováricas/genética , Poli(ADP-Ribosa) Polimerasa-1 , Poli(ADP-Ribosa) Polimerasas/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/genética , Transfección , Proteínas Supresoras de Tumor/metabolismo , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X
20.
Proc Natl Acad Sci U S A ; 108(8): 3406-11, 2011 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-21300883

RESUMEN

Poly(ADP-ribose) polymerase (PARP) inhibitors are strikingly toxic to cells with defects in homologous recombination (HR). The mechanistic basis for these findings is incompletely understood. Here, we show that PARP inhibitor treatment induces phosphorylation of DNA-dependent protein kinase substrates and stimulates error-prone nonhomologous end joining (NHEJ) selectively in HR-deficient cells. Notably, inhibiting DNA-dependent protein kinase activity reverses the genomic instability previously reported in these cells after PARP inhibition. Moreover, disabling NHEJ by using genetic or pharmacologic approaches rescues the lethality of PARP inhibition or down-regulation in cell lines lacking BRCA2, BRCA1, or ATM. Collectively, our results not only implicate PARP1 catalytic activity in the regulation of NHEJ in HR-deficient cells, but also indicate that deregulated NHEJ plays a major role in generating the genomic instability and cytotoxicity in HR-deficient cells treated with PARP inhibitors.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Recombinación Genética , Animales , Muerte Celular , Línea Celular , Reparación del ADN , Proteína Quinasa Activada por ADN/metabolismo , Inestabilidad Genómica , Ratones , Fosforilación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...