Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
bioRxiv ; 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38586048

RESUMEN

Precision oncology is driven by molecular biomarkers. For glioblastoma multiforme (GBM), the most common malignant adult primary brain tumor, O6-methylguanine-DNA methyltransferase ( MGMT ) gene DNA promoter methylation is an important prognostic and treatment clinical biomarker. Time consuming pre-analytical steps such as biospecimen storage before fixing, sampling, and processing are major sources of errors and batch effects, that are further confounded by intra-tumor heterogeneity of MGMT promoter methylation. To assess the effect of pre-analytical variables on GBM DNA methylation, tissue storage/sampling (CryoGrid), sample preparation multi-sonicator (PIXUL) and 5-methylcytosine (5mC) DNA immunoprecipitation (Matrix MeDIP-qPCR/seq) platforms were used. MGMT promoter CpG methylation was examined in 173 surgical samples from 90 individuals, 50 of these were used for intra-tumor heterogeneity studies. MGMT promoter methylation levels in paired frozen and formalin fixed paraffin embedded (FFPE) samples were very close, confirming suitability of FFPE for MGMT promoter methylation analysis in clinical settings. Matrix MeDIP-qPCR yielded similar results to methylation specific PCR (MS-PCR). Warm ex-vivo ischemia (37°C up to 4hrs) and 3 cycles of repeated sample thawing and freezing did not alter 5mC levels at MGMT promoter, exon and upstream enhancer regions, demonstrating the resistance of DNA methylation to the most common variations in sample processing conditions that might be encountered in research and clinical settings. 20-30% of specimens exhibited intratumor heterogeneity in the MGMT DNA promoter methylation. Collectively these data demonstrate that variations in sample fixation, ischemia duration and temperature, and DNA methylation assay technique do not have significant impact on assessment of MGMT promoter methylation status. However, intratumor methylation heterogeneity underscores the need for histologic verification and value of multiple biopsies at different GBM geographic tumor sites in assessment of MGMT promoter methylation. Matrix-MeDIP-seq analysis revealed that MGMT promoter methylation status clustered with other differentially methylated genomic loci (e.g. HOXA and lncRNAs), that are likewise resilient to variation in above post-resection pre-analytical conditions. These MGMT -associated global DNA methylation patterns offer new opportunities to validate more granular data-based epigenetic GBM clinical biomarkers where the CryoGrid-PIXUL-Matrix toolbox could prove to be useful.

2.
Acta Neuropathol Commun ; 12(1): 64, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38650010

RESUMEN

Glioblastoma (GBM) remains an untreatable malignant tumor with poor patient outcomes, characterized by palisading necrosis and microvascular proliferation. While single-cell technology made it possible to characterize different lineage of glioma cells into neural progenitor-like (NPC-like), oligodendrocyte-progenitor-like (OPC-like), astrocyte-like (AC-like) and mesenchymal like (MES-like) states, it does not capture the spatial localization of these tumor cell states. Spatial transcriptomics empowers the study of the spatial organization of different cell types and tumor cell states and allows for the selection of regions of interest to investigate region-specific and cell-type-specific pathways. Here, we obtained paired 10x Chromium single-nuclei RNA-sequencing (snRNA-seq) and 10x Visium spatial transcriptomics data from three GBM patients to interrogate the GBM microenvironment. Integration of the snRNA-seq and spatial transcriptomics data reveals patterns of segregation of tumor cell states. For instance, OPC-like tumor and NPC-like tumor significantly segregate in two of the three samples. Our differentially expressed gene and pathway analyses uncovered significant pathways in functionally relevant niches. Specifically, perinecrotic regions were more immunosuppressive than the endogenous GBM microenvironment, and perivascular regions were more pro-inflammatory. Our gradient analysis suggests that OPC-like tumor cells tend to reside in areas closer to the tumor vasculature compared to tumor necrosis, which may reflect increased oxygen requirements for OPC-like cells. In summary, we characterized the localization of cell types and tumor cell states, the gene expression patterns, and pathways in different niches within the GBM microenvironment. Our results provide further evidence of the segregation of tumor cell states and highlight the immunosuppressive nature of the necrotic and perinecrotic niches in GBM.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Transcriptoma , Microambiente Tumoral , Humanos , Glioblastoma/genética , Glioblastoma/patología , Glioblastoma/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología
3.
medRxiv ; 2024 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-38633778

RESUMEN

Grade IV glioma, formerly known as glioblastoma multiforme (GBM) is the most aggressive and lethal type of brain tumor, and its treatment remains challenging in part due to extensive interpatient heterogeneity in disease driving mechanisms and lack of prognostic and predictive biomarkers. Using mechanistic inference of node-edge relationship (MINER), we have analyzed multiomics profiles from 516 patients and constructed an atlas of causal and mechanistic drivers of interpatient heterogeneity in GBM (gbmMINER). The atlas has delineated how 30 driver mutations act in a combinatorial scheme to causally influence a network of regulators (306 transcription factors and 73 miRNAs) of 179 transcriptional "programs", influencing disease progression in patients across 23 disease states. Through extensive testing on independent patient cohorts, we share evidence that a machine learning model trained on activity profiles of programs within gbmMINER significantly augments risk stratification, identifying patients who are super-responders to standard of care and those that would benefit from 2 nd line treatments. In addition to providing mechanistic hypotheses regarding disease prognosis, the activity of programs containing targets of 2 nd line treatments accurately predicted efficacy of 28 drugs in killing glioma stem-like cells from 43 patients. Our findings demonstrate that interpatient heterogeneity manifests from differential activities of transcriptional programs, providing actionable strategies for mechanistically characterizing GBM from a systems perspective and developing better prognostic and predictive biomarkers for personalized medicine.

4.
medRxiv ; 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38633807

RESUMEN

Background: Individualized treatment decisions for patients with multiple myeloma (MM) requires accurate risk stratification that takes into account patient-specific consequences of genetic abnormalities and tumor microenvironment on disease outcome and therapy responsiveness. Methods: Previously, SYstems Genetic Network AnaLysis (SYGNAL) of multi-omics tumor profiles from 881 MM patients generated the mmSYGNAL network, which uncovered different causal and mechanistic drivers of genetic programs associated with disease progression across MM subtypes. Here, we have trained a machine learning (ML) algorithm on activities of mmSYGNAL programs within individual patient tumor samples to develop a risk classification scheme for MM that significantly outperformed cytogenetics, International Staging System, and multi-gene biomarker panels in predicting risk of PFS across four independent patient cohorts. Results: We demonstrate that, unlike other tests, mmSYGNAL can accurately predict disease progression risk at primary diagnosis, pre- and post-transplant and even after multiple relapses, making it useful for individualized dynamic risk assessment throughout the disease trajectory. Conclusion: mmSYGNAL provides improved individualized risk stratification that accounts for a patient's distinct set of genetic abnormalities and can monitor risk longitudinally as each patient's disease characteristics change.

5.
Genes Dev ; 38(5-6): 273-288, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38589034

RESUMEN

Glioblastoma is universally fatal and characterized by frequent chromosomal copy number alterations harboring oncogenes and tumor suppressors. In this study, we analyzed exome-wide human glioblastoma copy number data and found that cytoband 6q27 is an independent poor prognostic marker in multiple data sets. We then combined CRISPR-Cas9 data, human spatial transcriptomic data, and human and mouse RNA sequencing data to nominate PDE10A as a potential haploinsufficient tumor suppressor in the 6q27 region. Mouse glioblastoma modeling using the RCAS/tv-a system confirmed that Pde10a suppression induced an aggressive glioma phenotype in vivo and resistance to temozolomide and radiation therapy in vitro. Cell culture analysis showed that decreased Pde10a expression led to increased PI3K/AKT signaling in a Pten-independent manner, a response blocked by selective PI3K inhibitors. Single-nucleus RNA sequencing from our mouse gliomas in vivo, in combination with cell culture validation, further showed that Pde10a suppression was associated with a proneural-to-mesenchymal transition that exhibited increased cell adhesion and decreased cell migration. Our results indicate that glioblastoma patients harboring PDE10A loss have worse outcomes and potentially increased sensitivity to PI3K inhibition.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Animales , Ratones , Glioblastoma/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Haploinsuficiencia , Glioma/genética , Fosfohidrolasa PTEN/genética , Hidrolasas Diéster Fosfóricas/genética , Línea Celular Tumoral , Neoplasias Encefálicas/genética
6.
bioRxiv ; 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38659838

RESUMEN

Single-cell transcriptomics has unveiled a vast landscape of cellular heterogeneity in which the cell cycle is a significant component. We trained a high-resolution cell cycle classifier (ccAFv2) using single cell RNA-seq (scRNA-seq) characterized human neural stem cells. The ccAFv2 classifies six cell cycle states (G1, Late G1, S, S/G2, G2/M, and M/Early G1) and a quiescent-like G0 state, and it incorporates a tunable parameter to filter out less certain classifications. The ccAFv2 classifier performed better than or equivalent to other state-of-the-art methods even while classifying more cell cycle states, including G0. We showcased the versatility of ccAFv2 by successfully applying it to classify cells, nuclei, and spatial transcriptomics data in humans and mice, using various normalization methods and gene identifiers. We provide methods to regress the cell cycle expression patterns out of single cell or nuclei data to uncover underlying biological signals. The classifier can be used either as an R package integrated with Seurat (https://github.com/plaisier-lab/ccafv2_R) or a PyPI package integrated with scanpy (https://pypi.org/project/ccAFv2/). We proved that ccAFv2 has enhanced accuracy, flexibility, and adaptability across various experimental conditions, establishing ccAFv2 as a powerful tool for dissecting complex biological systems, unraveling cellular heterogeneity, and deciphering the molecular mechanisms by which proliferation and quiescence affect cellular processes.

7.
bioRxiv ; 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38370784

RESUMEN

Poor prognosis and drug resistance in glioblastoma (GBM) can result from cellular heterogeneity and treatment-induced shifts in phenotypic states of tumor cells, including dedifferentiation into glioma stem-like cells (GSCs). This rare tumorigenic cell subpopulation resists temozolomide, undergoes proneural-to-mesenchymal transition (PMT) to evade therapy, and drives recurrence. Through inference of transcriptional regulatory networks (TRNs) of patient-derived GSCs (PD-GSCs) at single-cell resolution, we demonstrate how the topology of transcription factor interaction networks drives distinct trajectories of cell state transitions in PD-GSCs resistant or susceptible to cytotoxic drug treatment. By experimentally testing predictions based on TRN simulations, we show that drug treatment drives surviving PD-GSCs along a trajectory of intermediate states, exposing vulnerability to potentiated killing by siRNA or a second drug targeting treatment-induced transcriptional programs governing non-genetic cell plasticity. Our findings demonstrate an approach to uncover TRN topology and use it to rationally predict combinatorial treatments that disrupts acquired resistance in GBM.

8.
Semin Neurol ; 43(6): 810-824, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37963582

RESUMEN

The care of patients with both high-grade glioma and low-grade glioma necessitates an interdisciplinary collaboration between neurosurgeons, neuro-oncologists, neurologists and other practitioners. In this review, we aim to detail the considerations, approaches and advances in the neurosurgical care of gliomas. We describe the impact of extent-of-resection in high-grade and low-grade glioma, with particular focus on primary and recurrent glioblastoma. We address advances in surgical methods and adjunct technologies such as intraoperative imaging and fluorescence guided surgery that maximize extent-of-resection while minimizing the potential for iatrogenic neurological deficits. Finally, we review surgically-mediated therapies other than resection and discuss the role of neurosurgery in emerging paradigm-shifts in inter-disciplinary glioma management such as serial tissue sampling and "window of opportunity trials".


Asunto(s)
Neoplasias Encefálicas , Glioma , Cirugía Asistida por Computador , Humanos , Neoplasias Encefálicas/cirugía , Recurrencia Local de Neoplasia/cirugía , Glioma/cirugía , Cirugía Asistida por Computador/métodos , Procedimientos Neuroquirúrgicos
9.
Sci Rep ; 13(1): 14442, 2023 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-37660111

RESUMEN

Abnormal human behavior must be monitored and controlled in today's technology-driven era, since it may cause damage to society in the form of assault or web-based violence, such as direct harm to a person or the propagation of hate crimes through the internet. Several authors have attempted to address this issue, but no one has yet come up with a solution that is both practical and workable. Recently, deep learning models have become popular as a means of handling massive amounts of data but their potential to categorize the aberrant human activity remains unexplored. Using a convolutional neural network (CNN), a bidirectional long short-term memory (Bi-LSTM), and an attention mechanism to pay attention to the unique spatiotemporal characteristics of raw video streams, a deep-learning approach has been implemented in the proposed framework to detect anomalous human activity. After analyzing the video, our suggested architecture can reliably assign an abnormal human behavior to its designated category. Analytic findings comparing the suggested architecture to state-of-the-art algorithms reveal an accuracy of 98.9%, 96.04%, and 61.04% using the UCF11, UCF50, and subUCF crime datasets, respectively.


Asunto(s)
Algoritmos , Memoria a Corto Plazo , Humanos , Crimen , Actividades Humanas , Internet
10.
Nat Cancer ; 4(9): 1258-1272, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37537301

RESUMEN

The accepted paradigm for both cellular and anti-tumor immunity relies upon tumor cell killing by CD8+ T cells recognizing cognate antigens presented in the context of target cell major histocompatibility complex (MHC) class I (MHC-I) molecules. Likewise, a classically described mechanism of tumor immune escape is tumor MHC-I downregulation. Here, we report that CD8+ T cells maintain the capacity to kill tumor cells that are entirely devoid of MHC-I expression. This capacity proves to be dependent instead on interactions between T cell natural killer group 2D (NKG2D) and tumor NKG2D ligands (NKG2DLs), the latter of which are highly expressed on MHC-loss variants. Necessarily, tumor cell killing in these instances is antigen independent, although prior T cell antigen-specific activation is required and can be furnished by myeloid cells or even neighboring MHC-replete tumor cells. In this manner, adaptive priming can beget innate killing. These mechanisms are active in vivo in mice as well as in vitro in human tumor systems and are obviated by NKG2D knockout or blockade. These studies challenge the long-advanced notion that downregulation of MHC-I is a viable means of tumor immune escape and instead identify the NKG2D-NKG2DL axis as a therapeutic target for enhancing T cell-dependent anti-tumor immunity against MHC-loss variants.


Asunto(s)
Linfocitos T CD8-positivos , Neoplasias , Animales , Humanos , Ratones , Antígenos/metabolismo , Linfocitos T CD8-positivos/patología , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/metabolismo , Neoplasias/genética , Subfamilia K de Receptores Similares a Lectina de Células NK/genética , Subfamilia K de Receptores Similares a Lectina de Células NK/metabolismo
12.
Genes Dev ; 37(3-4): 86-102, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36732025

RESUMEN

Glioblastomas (GBMs) are heterogeneous, treatment-resistant tumors driven by populations of cancer stem cells (CSCs). However, few molecular mechanisms critical for CSC population maintenance have been exploited for therapeutic development. We developed a spatially resolved loss-of-function screen in GBM patient-derived organoids to identify essential epigenetic regulators in the SOX2-enriched, therapy-resistant niche and identified WDR5 as indispensable for this population. WDR5 is a component of the WRAD complex, which promotes SET1 family-mediated Lys4 methylation of histone H3 (H3K4me), associated with positive regulation of transcription. In GBM CSCs, WDR5 inhibitors blocked WRAD complex assembly and reduced H3K4 trimethylation and expression of genes involved in CSC-relevant oncogenic pathways. H3K4me3 peaks lost with WDR5 inhibitor treatment occurred disproportionally on POU transcription factor motifs, including the POU5F1(OCT4)::SOX2 motif. Use of a SOX2/OCT4 reporter demonstrated that WDR5 inhibitor treatment diminished cells with high reporter activity. Furthermore, WDR5 inhibitor treatment and WDR5 knockdown altered the stem cell state, disrupting CSC in vitro growth and self-renewal, as well as in vivo tumor growth. These findings highlight the role of WDR5 and the WRAD complex in maintaining the CSC state and provide a rationale for therapeutic development of WDR5 inhibitors for GBM and other advanced cancers.


Asunto(s)
Glioblastoma , Humanos , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Factores de Transcripción , Células Madre Neoplásicas/patología , Péptidos y Proteínas de Señalización Intracelular/genética
13.
NPJ Precis Oncol ; 6(1): 55, 2022 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-35941215

RESUMEN

Glioblastoma (GBM) is a heterogeneous tumor made up of cell states that evolve over time. Here, we modeled tumor evolutionary trajectories during standard-of-care treatment using multi-omic single-cell analysis of a primary tumor sample, corresponding mouse xenografts subjected to standard of care therapy, and recurrent tumor at autopsy. We mined the multi-omic data with single-cell SYstems Genetics Network AnaLysis (scSYGNAL) to identify a network of 52 regulators that mediate treatment-induced shifts in xenograft tumor-cell states that were also reflected in recurrence. By integrating scSYGNAL-derived regulatory network information with transcription factor accessibility deviations derived from single-cell ATAC-seq data, we developed consensus networks that modulate cell state transitions across subpopulations of primary and recurrent tumor cells. Finally, by matching targeted therapies to active regulatory networks underlying tumor evolutionary trajectories, we provide a framework for applying single-cell-based precision medicine approaches to an individual patient in a concurrent, adjuvant, or recurrent setting.

14.
Neuron ; 109(18): 2914-2927.e5, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34534454

RESUMEN

In the neocortex, subcerebral axonal projections originate largely from layer 5 (L5) extratelencephalic-projecting (ET) neurons. The unique morpho-electric properties of these neurons have been mainly described in rodents, where retrograde tracers or transgenic lines can label them. Similar labeling strategies are infeasible in the human neocortex, rendering the translational relevance of findings in rodents unclear. We leveraged the recent discovery of a transcriptomically defined L5 ET neuron type to study the properties of human L5 ET neurons in neocortical brain slices derived from neurosurgeries. Patch-seq recordings, where transcriptome, physiology, and morphology were assayed from the same cell, revealed many conserved morpho-electric properties of human and rodent L5 ET neurons. Divergent properties were often subtler than differences between L5 cell types within these two species. These data suggest a conserved function of L5 ET neurons in the neocortical hierarchy but also highlight phenotypic divergence possibly related to functional specialization of human neocortex.


Asunto(s)
Dendritas/fisiología , Morfogénesis/fisiología , Neocórtex/citología , Neocórtex/fisiología , Células Piramidales/fisiología , Transcriptoma/fisiología , Potenciales de Acción/fisiología , Adulto , Animales , Femenino , Humanos , Macaca nemestrina , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Persona de Mediana Edad , Técnicas de Cultivo de Órganos , Técnicas de Placa-Clamp/métodos
15.
Cancers (Basel) ; 13(13)2021 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-34202449

RESUMEN

Brain tumors are among the most lethal tumors. Glioblastoma, the most frequent primary brain tumor in adults, has a median survival time of approximately 15 months after diagnosis or a five-year survival rate of 10%; the recurrence rate is nearly 90%. Unfortunately, this prognosis has not improved for several decades. The lack of progress in the treatment of brain tumors has been attributed to their high rate of primary therapy resistance. Challenges such as pronounced inter-patient variability, intratumoral heterogeneity, and drug delivery across the blood-brain barrier hinder progress. A comprehensive, multiscale understanding of the disease, from the molecular to the whole tumor level, is needed to address the intratumor heterogeneity resulting from the coexistence of a diversity of neoplastic and non-neoplastic cell types in the tumor tissue. By contrast, inter-patient variability must be addressed by subtyping brain tumors to stratify patients and identify the best-matched drug(s) and therapies for a particular patient or cohort of patients. Accomplishing these diverse tasks will require a new framework, one involving a systems perspective in assessing the immense complexity of brain tumors. This would in turn entail a shift in how clinical medicine interfaces with the rapidly advancing high-throughput (HTP) technologies that have enabled the omics-scale profiling of molecular features of brain tumors from the single-cell to the tissue level. However, several gaps must be closed before such a framework can fulfill the promise of precision and personalized medicine for brain tumors. Ultimately, the goal is to integrate seamlessly multiscale systems analyses of patient tumors and clinical medicine. Accomplishing this goal would facilitate the rational design of therapeutic strategies matched to the characteristics of patients and their tumors. Here, we discuss some of the technologies, methodologies, and computational tools that will facilitate the realization of this vision to practice.

16.
Mol Syst Biol ; 17(6): e9522, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34101353

RESUMEN

Single-cell RNA sequencing has emerged as a powerful tool for resolving cellular states associated with normal and maligned developmental processes. Here, we used scRNA-seq to examine the cell cycle states of expanding human neural stem cells (hNSCs). From these data, we constructed a cell cycle classifier that identifies traditional cell cycle phases and a putative quiescent-like state in neuroepithelial-derived cell types during mammalian neurogenesis and in gliomas. The Neural G0 markers are enriched with quiescent NSC genes and other neurodevelopmental markers found in non-dividing neural progenitors. Putative glioblastoma stem-like cells were significantly enriched in the Neural G0 cell population. Neural G0 cell populations and gene expression are significantly associated with less aggressive tumors and extended patient survival for gliomas. Genetic screens to identify modulators of Neural G0 revealed that knockout of genes associated with the Hippo/Yap and p53 pathways diminished Neural G0 in vitro, resulting in faster G1 transit, down-regulation of quiescence-associated markers, and loss of Neural G0 gene expression. Thus, Neural G0 represents a dynamic quiescent-like state found in neuroepithelial-derived cells and gliomas.


Asunto(s)
Glioblastoma , Células-Madre Neurales , Animales , Ciclo Celular/genética , División Celular , Humanos , Neurogénesis/genética
17.
Nat Biotechnol ; 39(7): 819-824, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33846646

RESUMEN

Methods for quantifying gene expression1 and chromatin accessibility2 in single cells are well established, but single-cell analysis of chromatin regions with specific histone modifications has been technically challenging. In this study, we adapted the CUT&Tag method3 to scalable nanowell and droplet-based single-cell platforms to profile chromatin landscapes in single cells (scCUT&Tag) from complex tissues and during the differentiation of human embryonic stem cells. We focused on profiling polycomb group (PcG) silenced regions marked by histone H3 Lys27 trimethylation (H3K27me3) in single cells as an orthogonal approach to chromatin accessibility for identifying cell states. We show that scCUT&Tag profiling of H3K27me3 distinguishes cell types in human blood and allows the generation of cell-type-specific PcG landscapes from heterogeneous tissues. Furthermore, we used scCUT&Tag to profile H3K27me3 in a patient with a brain tumor before and after treatment, identifying cell types in the tumor microenvironment and heterogeneity in PcG activity in the primary sample and after treatment.


Asunto(s)
Cromatina/fisiología , Proteínas del Grupo Polycomb/metabolismo , Análisis de la Célula Individual , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Diferenciación Celular , Cromatina/genética , Células Madre Embrionarias , Regulación de la Expresión Génica , Silenciador del Gen , Humanos , Histona Demetilasas con Dominio de Jumonji/genética , Histona Demetilasas con Dominio de Jumonji/metabolismo , Células K562 , Proteínas del Grupo Polycomb/genética
18.
Blood Adv ; 5(6): 1682-1694, 2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33720339

RESUMEN

Vascular anomalies, including local and peripheral thrombosis, are a hallmark of glioblastoma (GBM) and an aftermath of deregulation of the cancer cell genome and epigenome. Although the molecular effectors of these changes are poorly understood, the upregulation of podoplanin (PDPN) by cancer cells has recently been linked to an increased risk for venous thromboembolism (VTE) in GBM patients. Therefore, regulation of this platelet-activating protein by transforming events in cancer cells is of considerable interest. We used single-cell and bulk transcriptome data mining, as well as cellular and xenograft models in mice, to analyze the nature of cells expressing PDPN, as well as their impact on the activation of the coagulation system and platelets. We report that PDPN is expressed by distinct (mesenchymal) GBM cell subpopulations and downregulated by oncogenic mutations of EGFR and IDH1 genes, along with changes in chromatin modifications (enhancer of zeste homolog 2) and DNA methylation. Glioma cells exteriorize their PDPN and/or tissue factor (TF) as cargo of exosome-like extracellular vesicles (EVs) shed from cells in vitro and in vivo. Injection of glioma-derived podoplanin carrying extracelluar vesicles (PDPN-EVs) activates platelets, whereas tissue factor carrying extracellular vesicles (TF-EVs) activate the clotting cascade. Similarly, an increase in platelet activation (platelet factor 4) or coagulation (D-dimer) markers occurs in mice harboring the corresponding glioma xenografts expressing PDPN or TF, respectively. Coexpression of PDPN and TF by GBM cells cooperatively affects tumor microthrombosis. Thus, in GBM, distinct cellular subsets drive multiple facets of cancer-associated thrombosis and may represent targets for phenotype- and cell type-based diagnosis and antithrombotic intervention.


Asunto(s)
Vesículas Extracelulares , Glioblastoma , Glioma , Trombosis , Animales , Humanos , Ratones , Tromboplastina/genética
19.
World Neurosurg ; 142: 29-42, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32599213

RESUMEN

In the present report, we have broadly outlined the potential advances in the field of skull base surgery, which might occur within the next 20 years based on the many areas of current research in biology and technology. Many of these advances will also be broadly applicable to other areas of neurosurgery. We have grounded our predictions for future developments in an exploration of what patients and surgeons most desire as outcomes for care. We next examined the recent developments in the field and outlined several promising areas of future improvement in skull base surgery, per se, as well as identifying the new hospital support systems needed to accommodate these changes. These include, but are not limited to, advances in imaging, Raman spectroscopy and microscopy, 3-dimensional printing and rapid prototyping, master-slave and semiautonomous robots, artificial intelligence applications in all areas of medicine, telemedicine, and green technologies in hospitals. In addition, we have reviewed the therapeutic approaches using nanotechnology, genetic engineering, antitumor antibodies, and stem cell technologies to repair damage caused by traumatic injuries, tumors, and iatrogenic injuries to the brain and cranial nerves. Additionally, we have discussed the training requirements for future skull base surgeons and stressed the need for adaptability and change. However, the essential requirements for skull base surgeons will remain unchanged, including knowledge, attention to detail, technical skill, innovation, judgment, and compassion. We believe that active involvement in these rapidly evolving technologies will enable us to shape some of the future of our discipline to address the needs of both patients and our profession.


Asunto(s)
Inteligencia Artificial/tendencias , Procedimientos Neuroquirúrgicos/tendencias , Procedimientos Ortopédicos/tendencias , Impresión Tridimensional/tendencias , Procedimientos Quirúrgicos Robotizados/tendencias , Base del Cráneo/cirugía , Predicción , Ingeniería Genética/métodos , Ingeniería Genética/tendencias , Humanos , Procedimientos Neuroquirúrgicos/métodos , Procedimientos Ortopédicos/métodos , Procedimientos Quirúrgicos Robotizados/métodos , Espectrometría Raman/métodos , Trasplante de Células Madre/métodos , Trasplante de Células Madre/tendencias
20.
Cancers (Basel) ; 13(1)2020 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-33383817

RESUMEN

Brain metastases are the most common intracranial malignant tumor in adults and are a cause of significant morbidity and mortality for cancer patients. Large brain metastases, defined as tumors with a maximum dimension >2 cm, present a unique clinical challenge for the delivery of stereotactic radiosurgery (SRS) as patients often present with neurologic symptoms that require expeditious treatment that must also be balanced against the potential consequences of surgery and radiation therapy-namely, leptomeningeal disease (LMD) and radionecrosis (RN). Hypofractionated stereotactic radiotherapy (HSRT) and pre-operative SRS have emerged as novel treatment techniques to help improve local control rates and reduce rates of RN and LMD for this patient population commonly managed with post-operative SRS. Recent literature suggests that pre-operative SRS can potentially half the risk of LMD compared to post-operative SRS and that HSRT can improve risk of RN to less than 10% while improving local control when meeting the appropriate goals for biologically effective dose (BED) and dose-volume constraints. We recommend a 3- or 5-fraction regimen in lieu of SRS delivering 15 Gy or less for large metastases or resection cavities. We provide a table comparing the BED of commonly used SRS and HSRT regimens, and provide an algorithm to help guide the management of these challenging clinical scenarios.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...