Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Med Virol ; 95(1): e28247, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36271493

RESUMEN

Monkeypox virus (MPXV) is a zoonotic orthopoxvirus within the Poxviridae family. MPXV is endemic to Central and West Africa. However, the world is currently witnessing an international outbreak with no clear epidemiological links to travel or animal exposure and with ever-increasing numbers of reported cases worldwide. Here, we evaluated and validated a new, sensitive, and specific real-time PCR-assay for MPXV diagnosis in humans and compare the performance of this novel assay against a Food & Drug Administration-cleared pan-Orthopox RT-PCR assay. We determined specificity, sensitivity, and analytic performance of the PKamp™ Monkeypox Virus RT-PCR assay targeting the viral F3L-gene. In addition, we further evaluated MPXV-PCR-positive specimens by viral culture, electron microscopy, and viral inactivation assays. The limit of detection was established at 7.2 genome copies/reaction, and MPXV was successfully identified in 20 clinical specimens with 100% correlation against the reference method with 100% sensitivity and specificity. Our results demonstrated the validity of this rapid, robust, and reliable RT-PCR assay for specific and accurate diagnosis of MPXV infection in human specimens collected both as dry swabs and in viral transport media. This assay has been approved by NYS Department of Health for clinical use.


Asunto(s)
Monkeypox virus , Mpox , Animales , Humanos , Monkeypox virus/genética , Mpox/epidemiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Técnicas de Amplificación de Ácido Nucleico/métodos , Reacción en Cadena en Tiempo Real de la Polimerasa
2.
J Med Virol ; 93(9): 5481-5486, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33963565

RESUMEN

As severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infections continue, there is a substantial need for cost-effective and large-scale testing that utilizes specimens that can be readily collected from both symptomatic and asymptomatic individuals in various community settings. Although multiple diagnostic methods utilize nasopharyngeal specimens, saliva specimens represent an attractive alternative as they can rapidly and safely be collected from different populations. While saliva has been described as an acceptable clinical matrix for the detection of SARS-CoV-2, evaluations of analytic performance across platforms for this specimen type are limited. Here, we used a novel sensitive RT-PCR/MALDI-TOF mass spectrometry-based assay (Agena MassARRAY®) to detect SARS-CoV-2 in saliva specimens. The platform demonstrated high diagnostic sensitivity and specificity when compared to matched patient upper respiratory specimens. We also evaluated the analytical sensitivity of the platform and determined the limit of detection of the assay to be 1562.5 copies/ml. Furthermore, across the five individual target components of this assay, there was a range in analytic sensitivities for each target with the N2 target being the most sensitive. Overall, this system also demonstrated comparable performance when compared to the detection of SARS-CoV-2 RNA in saliva by the cobas® 6800/8800 SARS-CoV-2 real-time RT-PCR Test (Roche). Together, we demonstrate that saliva represents an appropriate matrix for SARS-CoV-2 detection on the novel Agena system as well as on a conventional real-time RT-PCR assay. We conclude that the MassARRAY® system is a sensitive and reliable platform for SARS-CoV-2 detection in saliva, offering scalable throughput in a large variety of clinical laboratory settings.


Asunto(s)
Prueba de Ácido Nucleico para COVID-19/normas , COVID-19/diagnóstico , Pruebas Diagnósticas de Rutina/normas , ARN Viral/genética , SARS-CoV-2/genética , Saliva/virología , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/normas , Benchmarking , COVID-19/virología , Prueba de Ácido Nucleico para COVID-19/instrumentación , Prueba de Ácido Nucleico para COVID-19/métodos , Pruebas Diagnósticas de Rutina/instrumentación , Pruebas Diagnósticas de Rutina/métodos , Humanos , Límite de Detección , Nasofaringe/virología , Manejo de Especímenes/normas , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/instrumentación , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos
3.
Mol Biol Rep ; 42(8): 1265-73, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25761883

RESUMEN

Bamboo is one of the important plant for pulp, paper and charcoal industries. After China, India is the second largest bamboo reserve in Asia. Around the globe, wide genetic diversity of bamboo is present which serves as the base for selection and improvement. DNA based molecular markers appears to be a striking substitute for systematic assessment of the genetic diversity in conservation and genetic improvement of plants. DNA based molecular markers such as RAPD and ISSR were used to assess the genetic diversity in 13 bamboo genotypes. Total 120 RAPD and 63 ISSR primers were tested, of which only 42 polymorphic primers (30 RAPD and 12 ISSR), gave reproducible amplification profile and were used in this study. 30 RAPD primers yielded total 645 amplified fragments, of which 623 were polymorphic, and 20.76 polymorphic bands per primer were observed across 13 genotypes. 12 ISSR primers produced 246 amplified fragments, of which 241 were polymorphic, and 20.08 polymorphic bands per primer was observed across 13 different genotypes. The Jaccard's coefficient of RAPD, ISSR and pooled RAPD and ISSR dendrograms ranged from 0.26 to 0.83, 0.23 to 0.86 and 0.26 to 0.84 respectively. The present study found the large genetic diversity present between different elite genotypes of bamboo. Such investigation can deliver a well understanding of the available genotypes, which might be further exploited for the paper industry.


Asunto(s)
ADN de Plantas/química , Repeticiones de Microsatélite , Polimorfismo Genético , Técnica del ADN Polimorfo Amplificado Aleatorio , Sasa/genética , Marcadores Genéticos , Genotipo , Filogenia
4.
Physiol Mol Biol Plants ; 16(2): 207-13, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23572971

RESUMEN

RAPD (Random Amplified Polymorphic DNA) and ISSR (Inter-Simple Sequence Repeats) markers assay were employed to validate the genetic stability of date palm (Phoenix dactylifera L.) plants multiplied through somatic embryogenesis with upto forty two in vitro subcultures. Out of the 160 RAPD and 21 ISSR primers screened, 30 RAPD and 12 ISSR primers produced a total of 347 (246 RAPDs + 101 ISSRs) clear, distinct and reproducible amplicons, which were monomorphic across all micropropagated plants (27) studied. Thus, a total 8592 bands (number of plants analysed x number of amplicons with all the primers) were generated which exhibited homogeneous banding patterns with both RAPD and ISSR markers. These results indicate that the micropropagation protocol developed by us for rapid in vitro multiplication is appropriate and suitable for clonal propagation of date palm and corroborated the fact that somatic embryogenesis can also be used as one of the safest modes for production of true-to-type plants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...