Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
1.
Front Immunol ; 15: 1383612, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38742107

RESUMEN

Introduction: SARS-CoV-2, the cause of the COVID pandemic, is an RNA virus with a high propensity to mutate. Successive virus variants, including variants of concern (VOC), have emerged with increased transmission or immune escape. The original pandemic virus and early variants replicated poorly, if at all, in mice at least partly due to a mismatch between the receptor binding domain on the viral spike protein and the murine angiotensin converting enzyme 2 (ACE2). Omicron VOC emerged in late 2021 harboring > 50 new mutations, 35 of them in the spike protein. This variant resulted in a very large wave of infections, even in the face of prior immunity, albeit being inherently less severe than earlier variants. Reflecting the lower severity reported in humans, Omicron displayed attenuated infection in hamsters and also in the K18-hACE2 mouse model. K18-hACE2 mice express both the human ACE2 as well as the endogenous mouse ACE2. Methods: Here we infected hACE2 knock-in mice that express only human ACE2 and no murine ACE2, or C57BL/6 wildtype mice with SARS-CoV-2 D614G (first-wave isolate), Delta or Omicron BA.1 variants and assessed infectivity and downstream innate immune responses. Results: While replication of SARS-CoV-2 Omicron was lower in the lungs of hACE2 knock-in mice compared with SARS-CoV-2 D614G and VOC Delta, it replicated more efficiently than the earlier variants in C57BL/6 wildtype mice. This opens the opportunity to test the effect of host genetics on SARS-CoV-2 infections in wildtype mice. As a proof of principle, we tested Omicron infection in mice lacking expression of the interferon-alpha receptor-1 (IFNAR1). In these mice we found that loss of type I IFN receptor signaling resulted in higher viral loads in the lungs were detected. Finally, using a chimeric virus of first wave SARS-CoV-2 harboring the Omicron spike protein, we show that Omicron spike increase infection of C57BL/6 wildtype mice, but non-spike genes of Omicron confer attenuation of viral replication. Discussion: Since this chimeric virus efficiently infected C57BL/6 wildtype mice, and replicated in their lungs, our findings illustrate a pathway for genetic mapping of virushost interactions during SARS-CoV-2 infection.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Ratones Endogámicos C57BL , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Replicación Viral , Animales , SARS-CoV-2/genética , SARS-CoV-2/inmunología , SARS-CoV-2/fisiología , Ratones , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/inmunología , COVID-19/virología , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Humanos , Modelos Animales de Enfermedad , Técnicas de Sustitución del Gen , Ratones Transgénicos
2.
Vaccine ; 42(9): 2429-2437, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38458875

RESUMEN

Louping ill virus (LIV) is a tick-borne flavivirus that predominantly causes disease in livestock, especially sheep in the British Isles. A preventive vaccine, previously approved for veterinary use but now discontinued, was based on an inactivated whole virion that likely provided protection by induction of neutralizing antibodies recognizing the viral envelope (E) protein. A major disadvantage of the inactivated vaccine was the need for high containment facilities for the propagation of infectious virus, as mandated by the hazard group 3 status of the virus. This study aimed to develop high-efficacy non-infectious protein-based vaccine candidates. Specifically, soluble envelope protein (sE), and virus-like particles (VLPs), comprised of the precursor of membrane and envelope proteins, were generated, characterized, and studied for their immunogenicity in mice. Results showed that the VLPs induced more potent virus neutralizing response compared to sE, even though the total anti-envelope IgG content induced by the two antigens was similar. Depletion of anti-monomeric E protein antibodies from mouse immune sera suggested that the neutralizing antibodies elicited by the VLPs targeted epitopes spanning the highly organized structure of multimer of the E protein, whereas the antibody response induced by sE focused on E monomers. Thus, our results indicate that VLPs represent a promising LIV vaccine candidate.


Asunto(s)
Virus de la Encefalitis Transmitidos por Garrapatas , Vacunas de Partículas Similares a Virus , Vacunas , Animales , Ratones , Ovinos , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Proteínas del Envoltorio Viral
3.
Microbiol Spectr ; 12(4): e0407223, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38376353

RESUMEN

We previously identified the bisbenzimide Hoechst 33342 (H42) as a potent multi-stage inhibitor of the prototypic poxvirus, the vaccinia virus (VACV), and several parapoxviruses. A recent report showed that novel bisbenzimide compounds similar in structure to H42 could prevent human cytomegalovirus replication. Here, we assessed whether these compounds could also serve as poxvirus inhibitors. Using virological assays, we show that these bisbenzimide compounds inhibit VACV spread, plaque formation, and the production of infectious progeny VACV with relatively low cell toxicity. Further analysis of the VACV lifecycle indicated that the effective bisbenzimide compounds had little impact on VACV early gene expression but inhibited VACV late gene expression and truncated the formation of VACV replication sites. Additionally, we found that bisbenzimide compounds, including H42, can inhibit both monkeypox and a VACV mutant resistant to the widely used anti-poxvirus drug TPOXX (Tecovirimat). Therefore, the tested bisbenzimide compounds were inhibitors of both prototypic and pandemic potential poxviruses and could be developed for use in situations where anti-poxvirus drug resistance may occur. Additionally, these data suggest that bisbenzimide compounds may serve as broad-activity antiviral compounds, targeting diverse DNA viruses such as poxviruses and betaherpesviruses.IMPORTANCEThe 2022 mpox (monkeypox) outbreak served as a stark reminder that due to the cessation of smallpox vaccination over 40 years ago, most of the human population remains susceptible to poxvirus infection. With only two antivirals approved for the treatment of smallpox infection in humans, the need for additional anti-poxvirus compounds is evident. Having shown that the bisbenzimide H33342 is a potent inhibitor of poxvirus gene expression and DNA replication, here we extend these findings to include a set of novel bisbenzimide compounds that show anti-viral activity against mpox and a drug-resistant prototype poxvirus mutant. These results suggest that further development of bisbenzimides for the treatment of pandemic potential poxviruses is warranted.


Asunto(s)
Poxviridae , Viruela , Humanos , Bisbenzimidazol/metabolismo , Pandemias , Virus Vaccinia/genética
4.
Nat Microbiol ; 9(2): 451-463, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38228858

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) human adaptation resulted in distinct lineages with enhanced transmissibility called variants of concern (VOCs). Omicron is the first VOC to evolve distinct globally dominant subvariants. Here we compared their replication in human cell lines and primary airway cultures and measured host responses to infection. We discovered that subvariants BA.4 and BA.5 have improved their suppression of innate immunity when compared with earlier subvariants BA.1 and BA.2. Similarly, more recent subvariants (BA.2.75 and XBB lineages) also triggered reduced innate immune activation. This correlated with increased expression of viral innate antagonists Orf6 and nucleocapsid, reminiscent of VOCs Alpha to Delta. Increased Orf6 levels suppressed host innate responses to infection by decreasing IRF3 and STAT1 signalling measured by transcription factor phosphorylation and nuclear translocation. Our data suggest that convergent evolution of enhanced innate immune antagonist expression is a common pathway of human adaptation and link Omicron subvariant dominance to improved innate immune evasion.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Línea Celular , Evasión Inmune , Inmunidad Innata
5.
PLoS Pathog ; 19(11): e1011589, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37934791

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has continued to evolve throughout the coronavirus disease-19 (COVID-19) pandemic, giving rise to multiple variants of concern (VOCs) with different biological properties. As the pandemic progresses, it will be essential to test in near real time the potential of any new emerging variant to cause severe disease. BA.1 (Omicron) was shown to be attenuated compared to the previous VOCs like Delta, but it is possible that newly emerging variants may regain a virulent phenotype. Hamsters have been proven to be an exceedingly good model for SARS-CoV-2 pathogenesis. Here, we aimed to develop robust quantitative pipelines to assess the virulence of SARS-CoV-2 variants in hamsters. We used various approaches including RNAseq, RNA in situ hybridization, immunohistochemistry, and digital pathology, including software assisted whole section imaging and downstream automatic analyses enhanced by machine learning, to develop methods to assess and quantify virus-induced pulmonary lesions in an unbiased manner. Initially, we used Delta and Omicron to develop our experimental pipelines. We then assessed the virulence of recent Omicron sub-lineages including BA.5, XBB, BQ.1.18, BA.2, BA.2.75 and EG.5.1. We show that in experimentally infected hamsters, accurate quantification of alveolar epithelial hyperplasia and macrophage infiltrates represent robust markers for assessing the extent of virus-induced pulmonary pathology, and hence virus virulence. In addition, using these pipelines, we could reveal how some Omicron sub-lineages (e.g., BA.2.75 and EG.5.1) have regained virulence compared to the original BA.1. Finally, to maximise the utility of the digital pathology pipelines reported in our study, we developed an online repository containing representative whole organ histopathology sections that can be visualised at variable magnifications (https://covid-atlas.cvr.gla.ac.uk). Overall, this pipeline can provide unbiased and invaluable data for rapidly assessing newly emerging variants and their potential to cause severe disease.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Cricetinae , Humanos , SARS-CoV-2/genética , Virulencia , Aprendizaje Automático
6.
ACS Sens ; 8(9): 3338-3348, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37610841

RESUMEN

Our growing ability to tailor healthcare to the needs of individuals has the potential to transform clinical treatment. However, the measurement of multiple biomarkers to inform clinical decisions requires rapid, effective, and affordable diagnostics. Chronic diseases and rapidly evolving pathogens in a larger population have also escalated the need for improved diagnostic capabilities. Current chemical diagnostics are often performed in centralized facilities and are still dependent on multiple steps, molecular labeling, and detailed analysis, causing the result turnaround time to be over hours and days. Rapid diagnostic kits based on lateral flow devices can return results quickly but are only capable of detecting a handful of pathogens or markers. Herein, we present the use of disposable plasmonics with chiroptical nanostructures as a platform for low-cost, label-free optical biosensing with multiplexing and without the need for flow systems often required in current optical biosensors. We showcase the detection of SARS-CoV-2 in complex media as well as an assay for the Norovirus and Zika virus as an early developmental milestone toward high-throughput, single-step diagnostic kits for differential diagnosis of multiple respiratory viruses and any other emerging diagnostic needs. Diagnostics based on this platform, which we term "disposable plasmonics assays," would be suitable for low-cost screening of multiple pathogens or biomarkers in a near-point-of-care setting.


Asunto(s)
Técnicas Biosensibles , COVID-19 , Infección por el Virus Zika , Virus Zika , Humanos , SARS-CoV-2 , COVID-19/diagnóstico , Técnicas Biosensibles/métodos , Virión/química , Biomarcadores/análisis
7.
Molecules ; 28(13)2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37446546

RESUMEN

Re-emerging arboviruses represent a serious health problem due to their rapid vector-mediated spread, mainly in urban tropical areas. The 2013-2015 Zika virus (ZIKV) outbreak in South and Central America has been associated with cases of microcephaly in newborns and Guillain-Barret syndrome. We previously showed that the conjugate gallic acid-Hecate (GA-FALALKALKKALKKLKKALKKAL-CONH2)-is an efficient inhibitor of the hepatitis C virus. Here, we show that the Hecate peptide is degraded in human blood serum into three major metabolites. These metabolites conjugated with gallic acid were synthesized and their effect on ZIKV replication in cultured cells was evaluated. The GA-metabolite 5 (GA-FALALKALKKALKKL-COOH) was the most efficient in inhibiting two ZIKV strains of African and Asian lineage at the stage of both virus entry (virucidal and protective) and replication (post-entry). We also demonstrate that GA-metabolite 5 does not affect cell growth after 7 days of continuous treatment. Thus, this study identifies a new synthetic antiviral compound targeting different steps of ZIKV replication in vitro and with the potential for broad reactivity against other flaviviruses. Our work highlights a promising strategy for the development of new antivirals based on peptide metabolism and bioconjugation.


Asunto(s)
Fármacos Dermatológicos , Infección por el Virus Zika , Virus Zika , Recién Nacido , Humanos , Antivirales/química , Replicación Viral , Fármacos Dermatológicos/farmacología , Ácido Gálico/farmacología
8.
mSphere ; 8(2): e0056422, 2023 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-36840596

RESUMEN

The primary route of Zika virus (ZIKV) transmission is through the bite of an infected Aedes mosquito, when it probes the skin of a vertebrate host during a blood meal. Viral particles are injected into the bite site together with mosquito saliva and a complex mixture of other components. Some of them are known to play a key role in the augmentation of the arbovirus infection in the host, with increased viremia and/or morbidity. This vector-derived contribution to the infection is not usually considered when vaccine candidates are tested in preclinical animal models. In this study, we performed a preclinical validation of a promising ZIKV vaccine candidate in a mosquito-mouse transmission model using both Asian and African ZIKV lineages. Mice were immunized with engineered ZIKV virus-like particles and subsequently infected through the bite of ZIKV-infected Aedes aegypti mosquitoes. Despite a mild increase in viremia in mosquito-infected mice compared to those infected through traditional needle injection, the vaccine protected the animals from developing the disease and strongly reduced viremia. In addition, during peak viremia, naive mosquitoes were allowed to feed on infected vaccinated and nonvaccinated mice. Our analysis of viral titers in mosquitos showed that the vaccine was able to inhibit virus transmission from the host to the vector. IMPORTANCE Zika is a mosquito-borne viral disease, causing acute debilitating symptoms and complications in infected individuals and irreversible neuronal abnormalities in newborn children. The primary vectors of ZIKV are Aedes aegypti mosquitoes. Despite representing a significant public health burden with a widespread transmission in many regions of the world, Zika remains a neglected disease with no effective antiviral therapies or approved vaccines. It is known that components of the mosquito bite lead to an enhancement of viral infection and spread, but this aspect is often overlooked when vaccine candidates undergo preclinical validation. In this study, we included mosquitoes as viral vectors, demonstrating the ability of a promising vaccine candidate to protect animals against ZIKV infections after the bite of an infected mosquito and to also prevent its further transmission. These findings represent an additional crucial step for the development of an effective prevention tool for clinical use.


Asunto(s)
Vacunas de Partículas Similares a Virus , Infección por el Virus Zika , Virus Zika , Animales , Ratones , Viremia/prevención & control , Mosquitos Vectores
9.
Microbiol Spectr ; : e0254622, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36719195

RESUMEN

Two of the most important mechanisms of hepatitis C virus (HCV) immune evasion are the high variability of the amino acid sequence and epitope shielding via heavy glycosylation of the envelope (E) proteins. Previously, we showed that chimeric sHBsAg (hepatitis B virus [HBV] small surface antigen)-based virus-like particles (VLPs) carrying highly conserved epitope I from the HCV E2 glycoprotein (sHBsAg_412-425) elicit broadly neutralizing antibodies (bnAbs). However, many reports have identified escape mutations for such bnAbs that shift the N-glycosylation site from N417 to N415. This shift effectively masks the recognition of epitope I by antibodies raised against the wild-type glycoprotein. To investigate if glycan-shift-mediated immune evasion could be overcome by targeted vaccination strategies, we designed sHBsAg-based VLPs carrying epitope I with an N417S change (sHBsAg_N417S). Studies in BALB/c mice revealed that both sHBsAg_412-425 and sHBsAg_N417S VLPs were immunogenic, eliciting antibodies that recognized peptides encompassing epitope I regardless of the N417S change. However, we observed substantial differences in E1E2 glycoprotein binding and cell culture-derived HCV (HCVcc) neutralization between the sera elicited by sHBsAg_412-425 and those elicited by sHBsAg_N417S VLPs. Our results suggest a complex interplay among antibodies targeting epitope I, the E1E2 glycosylation status, and the epitope or global E1E2 conformation. Additionally, we observed striking similarities in the E1E2 glycoprotein binding patterns and HCVcc neutralization between sHBsAg_412-425 sera and AP33, suggesting that the immunization of mice with sHBsAg_412-425 VLPs can elicit AP33-like antibodies. This study emphasizes the role of antibodies against epitope I and represents an initial effort toward designing an antigen that elicits an immune response against epitope I with a glycan shift change. IMPORTANCE Epitope I, located within amino acids 412 to 423 of the HCV E2 glycoprotein, is an important target for an epitope-based HCV vaccine. One interesting feature of epitope I is the N417 glycosylation site, where a single change to S417 or T417 can shift the glycosylation site to position N415. This shift can effectively prevent the binding of broadly neutralizing antibodies targeting epitope I. Aiming to overcome glycan-shift-mediated immune evasion, we constructed sHBsAg_N417S VLPs carrying E2 epitope I, with N417S, and compared them with VLPs carrying wild-type epitope I. We show that antibodies elicited by the sHBsAg-based VLPs presenting two variants of the 412-425 epitope targeted two distinct glycan variants of the HCV E1E2 heterodimer. Our study suggests that due to the conformational flexibility of the E2 glycoprotein and epitope I, future vaccine antigens should elicit antibodies targeting more than one conformation and glycosylation variant of the 412-423 epitope.

10.
J Virol ; 96(23): e0125022, 2022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-36350154

RESUMEN

The appearance of new dominant variants of concern (VOC) of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) threatens the global response to the coronavirus disease 2019 (COVID-19) pandemic. Of these, the alpha variant (also known as B.1.1.7), which appeared initially in the United Kingdom, became the dominant variant in much of Europe and North America in the first half of 2021. The spike (S) glycoprotein of alpha acquired seven mutations and two deletions compared to the ancestral virus, including the P681H mutation adjacent to the polybasic cleavage site, which has been suggested to enhance S cleavage. Here, we show that the alpha spike protein confers a level of resistance to beta interferon (IFN-ß) in human lung epithelial cells. This correlates with resistance to an entry restriction mediated by interferon-induced transmembrane protein 2 (IFITM2) and a pronounced infection enhancement by IFITM3. Furthermore, the P681H mutation is essential for resistance to IFN-ß and context-dependent resistance to IFITMs in the alpha S. P681H reduces dependence on endosomal cathepsins, consistent with enhanced cell surface entry. However, reversion of H681 does not reduce cleaved spike incorporation into particles, indicating that it exerts its effect on entry and IFN-ß downstream of furin cleavage. Overall, we suggest that, in addition to adaptive immune escape, mutations associated with VOC may well also confer a replication and/or transmission advantage through adaptation to resist innate immune mechanisms. IMPORTANCE Accumulating evidence suggests that variants of concern (VOC) of SARS-CoV-2 evolve to evade the human immune response, with much interest focused on mutations in the spike protein that escape from antibodies. However, resistance to the innate immune response is essential for efficient viral replication and transmission. Here, we show that the alpha (B.1.1.7) VOC of SARS-CoV-2 is substantially more resistant to type I interferons than the parental Wuhan-like virus. This correlates with resistance to the antiviral protein IFITM2 and enhancement by its paralogue IFITM3. The key determinant of this is a proline-to-histidine change at position 681 in S adjacent to the furin cleavage site, which in the context of the alpha spike modulates cell entry pathways of SARS-CoV-2. Reversion of the mutation is sufficient to restore interferon and IFITM2 sensitivity, highlighting the dynamic nature of the SARS CoV-2 as it adapts to both innate and adaptive immunity in the humans.


Asunto(s)
COVID-19 , Interferón Tipo I , Humanos , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Furina/metabolismo , Interferón Tipo I/genética , Interferón Tipo I/metabolismo , Línea Celular , Mutación , Proteínas de la Membrana/metabolismo , Proteínas de Unión al ARN/metabolismo
12.
Viruses ; 14(8)2022 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-36016278

RESUMEN

Natural hepatitis C virus (HCV) infection is restricted to humans, whereas other primates such as rhesus macaques are non-permissive for infection. To identify human and rhesus macaque genes that differ or share the ability to inhibit HCV replication, we conducted a medium-throughput screen of lentivirus-expressed host genes that disrupt replication of HCV subgenomic replicon RNA expressing secreted Gaussia luciferase. A combined total of >800 interferon-stimulated genes (ISGs) were screened. Our findings confirmed established anti-HCV ISGs, such as IRF1, PKR and DDX60. Novel species−specific inhibitors were also identified and independently validated. Using a cell-based system that recapitulates productive HCV infection, we identified that over-expression of the 'Rho Guanine Nucleotide Exchange Factor 3' gene (ARHGEF3) from both species inhibits full-length virus replication. Additionally, replication of two mosquito-borne flaviviruses, yellow fever virus (YFV) and Zika virus (ZIKV), were also reduced in cell lines over-expressing ARHGEF3 compared to controls. In conclusion, we ascribe novel antiviral activity to the cellular gene ARHGEF3 that inhibits replication of HCV and other important human viral pathogens belonging to the Flaviviridae, and which is conserved between humans and rhesus macaques.


Asunto(s)
Hepatitis C , Infección por el Virus Zika , Virus Zika , Animales , Antivirales/farmacología , Hepacivirus/genética , Hepatitis C/tratamiento farmacológico , Humanos , Interferones/farmacología , Macaca mulatta , Factores de Intercambio de Guanina Nucleótido Rho , Replicación Viral , Infección por el Virus Zika/tratamiento farmacológico
13.
Viruses ; 14(7)2022 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-35891372

RESUMEN

Hepatitis C virus (HCV) infection is a major global health problem. In the majority of cases the virus is not cleared by the host immune response and progresses to chronic infection. Studies of the neutralizing antibody responses in individuals that naturally clear infection are limited. Understanding what constitutes a successful antibody response versus one that has 'failed' and resulted in chronic infection is important to understand what type of antibody response would need to be elicited by a protective vaccine. Samples from spontaneous clearers are difficult to obtain therefore studies are often limited. In our study through HCV Research UK, we had access to a cohort of over 200 samples. We identified the samples that contained HCV neutralizing antibodies using ELISA and HCV pseudoparticle (HCVpp) assays. We then utilised mutagenesis and cross-competition analysis to determine the profile of the neutralizing antibody responses. In addition, we analysed a cohort of samples from chronic infection using the same techniques to enable direct comparison of the antibody profiles observed in both cohorts. We conclude that similar profiles are present in both cohorts indicating that it is not the neutralizing antibody response per se that determines the outcome of infection. These data will provide useful information for future HCV vaccine design.


Asunto(s)
Hepacivirus , Hepatitis C , Anticuerpos Neutralizantes , Formación de Anticuerpos , Anticuerpos contra la Hepatitis C , Humanos , Proteínas del Envoltorio Viral
14.
Nat Microbiol ; 7(8): 1161-1179, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35798890

RESUMEN

Vaccines based on the spike protein of SARS-CoV-2 are a cornerstone of the public health response to COVID-19. The emergence of hypermutated, increasingly transmissible variants of concern (VOCs) threaten this strategy. Omicron (B.1.1.529), the fifth VOC to be described, harbours multiple amino acid mutations in spike, half of which lie within the receptor-binding domain. Here we demonstrate substantial evasion of neutralization by Omicron BA.1 and BA.2 variants in vitro using sera from individuals vaccinated with ChAdOx1, BNT162b2 and mRNA-1273. These data were mirrored by a substantial reduction in real-world vaccine effectiveness that was partially restored by booster vaccination. The Omicron variants BA.1 and BA.2 did not induce cell syncytia in vitro and favoured a TMPRSS2-independent endosomal entry pathway, these phenotypes mapping to distinct regions of the spike protein. Impaired cell fusion was determined by the receptor-binding domain, while endosomal entry mapped to the S2 domain. Such marked changes in antigenicity and replicative biology may underlie the rapid global spread and altered pathogenicity of the Omicron variant.


Asunto(s)
COVID-19 , Glicoproteína de la Espiga del Coronavirus , Anticuerpos Antivirales , Vacuna BNT162 , Humanos , Glicoproteínas de Membrana/metabolismo , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Proteínas del Envoltorio Viral/metabolismo , Internalización del Virus
15.
PLoS Pathog ; 18(6): e1010472, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35763545

RESUMEN

Hepatitis C virus (HCV) is highly diverse and grouped into eight genotypes (gts). Infectious cell culture models are limited to a few subtypes and isolates, hampering the development of prophylactic vaccines. A consensus gt1b genome (termed GLT1) was generated from an HCV infected liver-transplanted patient. GLT1 replicated to an outstanding efficiency in Huh7 cells upon SEC14L2 expression, by use of replication enhancing mutations or with a previously developed inhibitor-based regimen. RNA replication levels almost reached JFH-1, but full-length genomes failed to produce detectable amounts of infectious virus. Long-term passaging led to the adaptation of a genome carrying 21 mutations and concomitant production of high levels of transmissible infectivity (GLT1cc). During the adaptation, GLT1 spread in the culture even in absence of detectable amounts of free virus, likely due to cell-to-cell transmission, which appeared to substantially contribute to spreading of other isolates as well. Mechanistically, genome replication and particle production efficiency were enhanced by adaptation, while cell entry competence of HCV pseudoparticles was not affected. Furthermore, GLT1cc retained the ability to replicate in human liver chimeric mice, which was critically dependent on a mutation in domain 3 of nonstructural protein NS5A. Over the course of infection, only one mutation in the surface glycoprotein E2 consistently reverted to wildtype, facilitating assembly in cell culture but potentially affecting CD81 interaction in vivo. Overall, GLT1cc is an efficient gt1b infectious cell culture model, paving the road to a rationale-based establishment of new infectious HCV isolates and represents an important novel tool for the development of prophylactic HCV vaccines.


Asunto(s)
Hepacivirus , Hepatitis C , Animales , Técnicas de Cultivo de Célula , Genotipo , Humanos , Ratones , Mutación , Proteínas no Estructurales Virales/metabolismo , Replicación Viral
16.
PNAS Nexus ; 1(1): pgac024, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35529317

RESUMEN

Dabie bandavirus (previously severe fever with thrombocytopenia syndrome virus; SFTSV), is an emerging tick-borne bunyavirus responsible for severe fever with thrombocytopenia syndrome (SFTS), a disease with high case fatality that is characterized by high fever, thrombocytopenia, and potentially lethal hemorrhagic manifestations. Currently, neither effective therapeutic strategies nor approved vaccines exist for SFTS. Therefore, there remains a pressing need to better understand the pathogenesis of the disease and to identify therapeutic strategies to ameliorate SFTS outcomes. Using a type I interferon (IFN)-deficient mouse model, we investigated the viral tropism, disease kinetics, and the role of the virulence factor nonstructural protein (NSs) in SFTS. Ly6C+ MHCII+ cells in the lymphatic tissues were identified as an important target cell for SFTSV. Advanced SFTS was characterized by significant migration of inflammatory leukocytes, notably neutrophils, into the lymph node and spleen, however, these cells were not required to orchestrate the disease phenotype. The development of SFTS was associated with significant upregulation of proinflammatory cytokines, including high levels of IFN-γ and IL-6 in the serum, lymph node, and spleen. Humoral immunity generated by inoculation with delNSs SFTSV was 100% protective. Importantly, NSs was critical to the inhibition of the host IFNɣ response or downstream IFN-stimulated gene production and allowed for the establishment of severe disease. Finally, therapeutic but not prophylactic use of anti-IL-6 antibodies significantly increased the survival of mice following SFTSV infection and, therefore, this treatment modality presents a novel therapeutic strategy for treating severe SFTS.

17.
Cell Rep ; 38(6): 110344, 2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35093235

RESUMEN

SARS-CoV-2 has a broad mammalian species tropism infecting humans, cats, dogs, and farmed mink. Since the start of the 2019 pandemic, several reverse zoonotic outbreaks of SARS-CoV-2 have occurred in mink, one of which reinfected humans and caused a cluster of infections in Denmark. Here we investigate the molecular basis of mink and ferret adaptation and demonstrate the spike mutations Y453F, F486L, and N501T all specifically adapt SARS-CoV-2 to use mustelid ACE2. Furthermore, we risk assess these mutations and conclude mink-adapted viruses are unlikely to pose an increased threat to humans, as Y453F attenuates the virus replication in human cells and all three mink adaptations have minimal antigenic impact. Finally, we show that certain SARS-CoV-2 variants emerging from circulation in humans may naturally have a greater propensity to infect mustelid hosts and therefore these species should continue to be surveyed for reverse zoonotic infections.


Asunto(s)
Adaptación Biológica/inmunología , SARS-CoV-2/genética , Zoonosis Virales/genética , Animales , COVID-19 , Hurones/inmunología , Aptitud Genética/genética , Humanos , Visón/inmunología , Mutación , Pandemias , Sistema Respiratorio/virología , SARS-CoV-2/patogenicidad , Glicoproteína de la Espiga del Coronavirus/inmunología
18.
Gastroenterology ; 162(2): 562-574, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34655573

RESUMEN

BACKGROUND & AIMS: Development of a prophylactic hepatitis C virus (HCV) vaccine will require accurate and reproducible measurement of neutralizing breadth of vaccine-induced antibodies. Currently available HCV panels may not adequately represent the genetic and antigenic diversity of circulating HCV strains, and the lack of standardization of these panels makes it difficult to compare neutralization results obtained in different studies. Here, we describe the selection and validation of a genetically and antigenically diverse reference panel of 15 HCV pseudoparticles (HCVpps) for neutralization assays. METHODS: We chose 75 envelope (E1E2) clones to maximize representation of natural polymorphisms observed in circulating HCV isolates, and 65 of these clones generated functional HCVpps. Neutralization sensitivity of these HCVpps varied widely. HCVpps clustered into 15 distinct groups based on patterns of relative sensitivity to 7 broadly neutralizing monoclonal antibodies. We used these data to select a final panel of 15 antigenically representative HCVpps. RESULTS: Both the 65 and 15 HCVpp panels span 4 tiers of neutralization sensitivity, and neutralizing breadth measurements for 7 broadly neutralizing monoclonal antibodies were nearly equivalent using either panel. Differences in neutralization sensitivity between HCVpps were independent of genetic distances between E1E2 clones. CONCLUSIONS: Neutralizing breadth of HCV antibodies should be defined using viruses spanning multiple tiers of neutralization sensitivity rather than panels selected solely for genetic diversity. We propose that this multitier reference panel could be adopted as a standard for the measurement of neutralizing antibody potency and breadth, facilitating meaningful comparisons of neutralization results from vaccine studies in different laboratories.


Asunto(s)
Variación Antigénica/inmunología , Antígenos Virales/inmunología , Anticuerpos ampliamente neutralizantes/inmunología , Hepacivirus/inmunología , Pruebas de Neutralización/métodos , Proteínas del Envoltorio Viral/inmunología , Variación Antigénica/genética , Antígenos Virales/genética , Línea Celular Tumoral , Hepacivirus/genética , Hepatitis C/prevención & control , Humanos , Inmunogenicidad Vacunal , Reproducibilidad de los Resultados , Desarrollo de Vacunas , Proteínas del Envoltorio Viral/genética , Vacunas contra Hepatitis Viral/inmunología
19.
PLoS Pathog ; 17(12): e1010022, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34855916

RESUMEN

Vaccines are proving to be highly effective in controlling hospitalisation and deaths associated with SARS-CoV-2 infection but the emergence of viral variants with novel antigenic profiles threatens to diminish their efficacy. Assessment of the ability of sera from vaccine recipients to neutralise SARS-CoV-2 variants will inform the success of strategies for minimising COVID19 cases and the design of effective antigenic formulations. Here, we examine the sensitivity of variants of concern (VOCs) representative of the B.1.617.1 and B.1.617.2 (first associated with infections in India) and B.1.351 (first associated with infection in South Africa) lineages of SARS-CoV-2 to neutralisation by sera from individuals vaccinated with the BNT162b2 (Pfizer/BioNTech) and ChAdOx1 (Oxford/AstraZeneca) vaccines. Across all vaccinated individuals, the spike glycoproteins from B.1.617.1 and B.1.617.2 conferred reductions in neutralisation of 4.31 and 5.11-fold respectively. The reduction seen with the B.1.617.2 lineage approached that conferred by the glycoprotein from B.1.351 (South African) variant (6.29-fold reduction) that is known to be associated with reduced vaccine efficacy. Neutralising antibody titres elicited by vaccination with two doses of BNT162b2 were significantly higher than those elicited by vaccination with two doses of ChAdOx1. Fold decreases in the magnitude of neutralisation titre following two doses of BNT162b2, conferred reductions in titre of 7.77, 11.30 and 9.56-fold respectively to B.1.617.1, B.1.617.2 and B.1.351 pseudoviruses, the reduction in neutralisation of the delta variant B.1.617.2 surpassing that of B.1.351. Fold changes in those vaccinated with two doses of ChAdOx1 were 0.69, 4.01 and 1.48 respectively. The accumulation of mutations in these VOCs, and others, demonstrate the quantifiable risk of antigenic drift and subsequent reduction in vaccine efficacy. Accordingly, booster vaccines based on updated variants are likely to be required over time to prevent productive infection. This study also suggests that two dose regimes of vaccine are required for maximal BNT162b2 and ChAdOx1-induced immunity.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Vacuna BNT162 , COVID-19 , Inmunización Secundaria , SARS-CoV-2/inmunología , Eficacia de las Vacunas , Deriva y Cambio Antigénico/inmunología , Vacuna BNT162/administración & dosificación , Vacuna BNT162/inmunología , COVID-19/inmunología , COVID-19/mortalidad , COVID-19/prevención & control , Células HEK293 , Humanos
20.
Cancers (Basel) ; 13(20)2021 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-34680227

RESUMEN

Hepatitis C virus (HCV) is a common cause of hepatocellular carcinoma (HCC). The activation and mutagenic consequences of L1 retrotransposons in virus-associated-HCC have been documented. However, the direct influence of HCV upon L1 elements is unclear, and is the focus of the present study. L1 transcript expression was evaluated in a publicly available liver tissue RNA-seq dataset from patients with chronic HCV hepatitis (CHC), as well as healthy controls. L1 transcript expression was significantly higher in CHC than in controls. L1orf1p (a L1 encoded protein) expression was observed in six out of 11 CHC livers by immunohistochemistry. To evaluate the influence of HCV on retrotransposition efficiency, in vitro engineered-L1 retrotransposition assays were employed in Huh7 cells in the presence and absence of an HCV replicon. An increased retrotransposition rate was observed in the presence of replicating HCV RNA, and persisted in cells after viral clearance due to sofosbuvir (PSI7977) treatment. Increased retrotransposition could be due to dysregulation of the DNA-damage repair response, including homologous recombination, due to HCV infection. Altogether these data suggest that L1 expression can be activated before oncogenic transformation in CHC patients, with HCV-upregulated retrotransposition potentially contributing to HCC genomic instability and a risk of transformation that persists post-viral clearance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...