Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Bio Mater ; 3(7): 4179-4187, 2020 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-34368641

RESUMEN

Cancer vaccines are promising adjuvant immunotherapies that can stimulate the immune system to recognize tumor-associated antigens and eliminate the residual or recurring disease. The aberrant and restricted expression of highly immunogenic cancer testis antigen NY-ESO-1 in several malignancies, including triple-negative breast cancer, melanoma, myelomas, and ovarian cancer, makes NY-ESO-1 an attractive antigenic target for cancer vaccines. This study describes a NY-ESO-1 vaccine based on a bio-inspired nanomaterial platform technology, specifically a plant virus nanoparticle. The 30 nm icosahedral plant virus cowpea mosaic virus (CPMV) displaying multiple copies of human HLA-A2 restricted peptide antigen NY-ESO-1157-165 exhibited enhanced uptake and activation of antigen-presenting cells and stimulated a potent CD8+ T cell response in transgenic human HLA-A2 expressing mice. CD8+ T cells from immunized mice exhibited antigen-specific proliferation and cancer cell cytotoxicity, highlighting the potential application of a CPMV-NY-ESO-1 vaccine against NY-ESO-1+ malignancies.

2.
Biomacromolecules ; 18(12): 4141-4153, 2017 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-29144726

RESUMEN

Platform technologies based on plant virus nanoparticles (VNPs) and virus-like particles (VLPs) are attracting the attention of researchers and clinicians because the particles are biocompatible, biodegradable, noninfectious in mammals, and can readily be chemically and genetically engineered to carry imaging agents and drugs. When the Physalis mottle virus (PhMV) coat protein is expressed in Escherichia coli, the resulting VLPs are nearly identical to the viruses formed in vivo. Here, we isolated PhMV-derived VLPs from ClearColi cells and carried out external and internal surface modification with fluorophores using reactive lysine-N-hydroxysuccinimide ester and cysteine-maleimide chemistries, respectively. The uptake of dye-labeled particles was tested in a range of cancer cells and monitored by confocal microscopy and flow cytometry. VLPs labeled internally on cysteine residues were taken up with high efficiency by several cancer cell lines and were colocalized with the endolysosomal marker LAMP-1 within 6 h, whereas VLPs labeled externally on lysine residues were taken up with lower efficiency, probably reflecting differences in surface charge and the propensity to bind to the cell surface. The infusion of dye and drug molecules into the cavity of the VLPs revealed that the photosensitizer (PS), Zn-EpPor, and the drugs crystal violet, mitoxantrone (MTX), and doxorubicin (DOX) associated stably with the carrier via noncovalent interactions. We confirmed the cytotoxicity of the PS-PhMV and DOX-PhMV particles against prostate cancer, ovarian and breast cancer cell lines, respectively. Our results show that PhMV-derived VLPs provide a new platform technology for the delivery of imaging agents and drugs, with preferential uptake into cancer cells. These particles could therefore be developed as multifunctional tools for cancer diagnosis and therapy.


Asunto(s)
Portadores de Fármacos/química , Indicadores y Reactivos/química , Nanopartículas/química , Preparaciones Farmacéuticas/química , Tymovirus/química , Animales , Línea Celular , Línea Celular Tumoral , Doxorrubicina/química , Células HeLa , Humanos , Lisina/química , Maleimidas/química , Ratones , Mitoxantrona/química , Neoplasias/diagnóstico , Neoplasias/diagnóstico por imagen , Fármacos Fotosensibilizantes/química , Células RAW 264.7
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...