Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
J Immunol ; 211(12): 1767-1782, 2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-37947442

RESUMEN

Understanding the mechanisms underlying the acquisition and maintenance of effector function during T cell differentiation is important to unraveling how these processes can be dysregulated in the context of disease and manipulated for therapeutic intervention. In this study, we report the identification of a previously unappreciated regulator of murine T cell differentiation through the evaluation of a previously unreported activity of the kinase inhibitor, BioE-1197. Specifically, we demonstrate that liver kinase B1 (LKB1)-mediated activation of salt-inducible kinases epigenetically regulates cytokine recall potential in effector CD8+ and Th1 cells. Evaluation of this phenotype revealed that salt-inducible kinase-mediated phosphorylation-dependent stabilization of histone deacetylase 7 (HDAC7) occurred during late-stage effector differentiation. HDAC7 stabilization increased nuclear HDAC7 levels, which correlated with total and cytokine loci-specific reductions in the activating transcription mark histone 3 lysine 27 acetylation (H3K27Ac). Accordingly, HDAC7 stabilization diminished transcriptional induction of cytokine genes upon restimulation. Inhibition of this pathway during differentiation produced effector T cells epigenetically poised for enhanced cytokine recall. This work identifies a previously unrecognized target for enhancing effector T cell functionality.


Asunto(s)
Citocinas , Procesamiento Proteico-Postraduccional , Proteínas Serina-Treonina Quinasas , Animales , Ratones , Diferenciación Celular , Citocinas/metabolismo , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo
2.
JCI Insight ; 8(21)2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37788104

RESUMEN

MTORC1 integrates signaling from the immune microenvironment to regulate T cell activation, differentiation, and function. TSC2 in the tuberous sclerosis complex tightly regulates mTORC1 activation. CD8+ T cells lacking TSC2 have constitutively enhanced mTORC1 activity and generate robust effector T cells; however, sustained mTORC1 activation prevents generation of long-lived memory CD8+ T cells. Here we show that manipulating TSC2 at Ser1365 potently regulated activated but not basal mTORC1 signaling in CD8+ T cells. Unlike nonstimulated TSC2-KO cells, CD8+ T cells expressing a phosphosilencing mutant TSC2-S1365A (TSC2-SA) retained normal basal mTORC1 activity. PKC and T cell receptor (TCR) stimulation induced TSC2 S1365 phosphorylation, and preventing this with the SA mutation markedly increased mTORC1 activation and T cell effector function. Consequently, SA CD8+ T cells displayed greater effector responses while retaining their capacity to become long-lived memory T cells. SA CD8+ T cells also displayed enhanced effector function under hypoxic and acidic conditions. In murine and human solid-tumor models, SA CD8+ T cells used as adoptive cell therapy displayed greater antitumor immunity than WT CD8+ T cells. These findings reveal an upstream mechanism to regulate mTORC1 activity in T cells. The TSC2-SA mutation enhanced both T cell effector function and long-term persistence/memory formation, supporting an approach to engineer better CAR-T cells for treating cancer.


Asunto(s)
Esclerosis Tuberosa , Ratones , Humanos , Animales , Diana Mecanicista del Complejo 1 de la Rapamicina , Linfocitos T CD8-positivos , Mutación , Diferenciación Celular , Microambiente Tumoral
3.
Nature ; 622(7984): 850-862, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37794185

RESUMEN

Immune checkpoint blockade is effective for some patients with cancer, but most are refractory to current immunotherapies and new approaches are needed to overcome resistance1,2. The protein tyrosine phosphatases PTPN2 and PTPN1 are central regulators of inflammation, and their genetic deletion in either tumour cells or immune cells promotes anti-tumour immunity3-6. However, phosphatases are challenging drug targets; in particular, the active site has been considered undruggable. Here we present the discovery and characterization of ABBV-CLS-484 (AC484), a first-in-class, orally bioavailable, potent PTPN2 and PTPN1 active-site inhibitor. AC484 treatment in vitro amplifies the response to interferon and promotes the activation and function of several immune cell subsets. In mouse models of cancer resistant to PD-1 blockade, AC484 monotherapy generates potent anti-tumour immunity. We show that AC484 inflames the tumour microenvironment and promotes natural killer cell and CD8+ T cell function by enhancing JAK-STAT signalling and reducing T cell dysfunction. Inhibitors of PTPN2 and PTPN1 offer a promising new strategy for cancer immunotherapy and are currently being evaluated in patients with advanced solid tumours (ClinicalTrials.gov identifier NCT04777994 ). More broadly, our study shows that small-molecule inhibitors of key intracellular immune regulators can achieve efficacy comparable to or exceeding that of antibody-based immune checkpoint blockade in preclinical models. Finally, to our knowledge, AC484 represents the first active-site phosphatase inhibitor to enter clinical evaluation for cancer immunotherapy and may pave the way for additional therapeutics that target this important class of enzymes.


Asunto(s)
Inmunoterapia , Neoplasias , Proteína Tirosina Fosfatasa no Receptora Tipo 1 , Proteína Tirosina Fosfatasa no Receptora Tipo 2 , Animales , Humanos , Ratones , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Modelos Animales de Enfermedad , Resistencia a Antineoplásicos , Inhibidores de Puntos de Control Inmunológico , Inmunoterapia/métodos , Interferones/inmunología , Células Asesinas Naturales/efectos de los fármacos , Células Asesinas Naturales/inmunología , Neoplasias/tratamiento farmacológico , Neoplasias/enzimología , Neoplasias/inmunología , Proteína Tirosina Fosfatasa no Receptora Tipo 1/antagonistas & inhibidores , Proteína Tirosina Fosfatasa no Receptora Tipo 2/antagonistas & inhibidores , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología
4.
Immunohorizons ; 7(6): 493-507, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37358498

RESUMEN

In order to study mechanistic/mammalian target of rapamycin's role in T cell differentiation, we generated mice in which Rheb is selectively deleted in T cells (T-Rheb-/- C57BL/6J background). During these studies, we noted that T-Rheb-/- mice were consistently heavier but had improved glucose tolerance and insulin sensitivity as well as a marked increase in beige fat. Microarray analysis of Rheb-/- T cells revealed a marked increase in expression of kallikrein 1-related peptidase b22 (Klk1b22). Overexpression of KLK1b22 in vitro enhanced insulin receptor signaling, and systemic overexpression of KLK1b22 in C57BL/6J mice also enhances glucose tolerance. Although KLK1B22 expression was markedly elevated in the T-Rheb-/- T cells, we never observed any expression in wild-type T cells. Interestingly, in querying the mouse Immunologic Genome Project, we found that Klk1b22 expression was also increased in wild-type 129S1/SVLMJ and C3HEJ mice. Indeed, both strains of mice demonstrate exceptionally improved glucose tolerance. This prompted us to employ CRISPR-mediated knockout of KLK1b22 in 129S1/SVLMJ mice, which in fact led to reduced glucose tolerance. Overall, our studies reveal (to our knowledge) a novel role for KLK1b22 in regulating systemic metabolism and demonstrate the ability of T cell-derived KLK1b22 to regulate systemic metabolism. Notably, however, further studies have revealed that this is a serendipitous finding unrelated to Rheb.


Asunto(s)
Calicreínas , Linfocitos T , Animales , Ratones , Masculino , Femenino , Ratones Endogámicos C57BL , Adipocitos Beige , Linfocitos T/metabolismo , Calicreínas/metabolismo , Glucemia/metabolismo , Resistencia a la Insulina
5.
JCI Insight ; 8(12)2023 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-37166984

RESUMEN

T cells play an important role in acute kidney injury (AKI). Metabolic programming of T cells regulates their function, is a rapidly emerging field, and is unknown in AKI. We induced ischemic AKI in C57BL/6J mice and collected kidneys and spleens at multiple time points. T cells were isolated and analyzed by an immune-metabolic assay. Unbiased machine learning analyses identified a distinct T cell subset with reduced voltage-dependent anion channel 1 and mTOR expression in post-AKI kidneys. Ischemic kidneys showed higher expression of trimethylation of histone H3 lysine 27 and glutaminase. Splenic T cells from post-AKI mice had higher expression of glucose transporter 1, hexokinase II, and carnitine palmitoyltransferase 1a. Human nonischemic and ischemic kidney tissue displayed similar findings to mouse kidneys. Given a convergent role for glutamine in T cell metabolic pathways and the availability of a relatively safe glutamine antagonist, JHU083, effects on AKI were evaluated. JHU083 attenuated renal injury and reduced T cell activation and proliferation in ischemic and nephrotoxic AKI, whereas T cell-deficient mice were not protected by glutamine blockade. In vitro hypoxia demonstrated upregulation of glycolysis-related enzymes. T cells undergo metabolic reprogramming during AKI, and reconstitution of metabolism by targeting T cell glutamine pathway could be a promising novel therapeutic approach.


Asunto(s)
Lesión Renal Aguda , Glutamina , Humanos , Ratones , Animales , Ratones Endogámicos C57BL , Lesión Renal Aguda/metabolismo , Subgrupos de Linfocitos T/metabolismo , Isquemia/tratamiento farmacológico
7.
Cell Rep ; 42(1): 111987, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36640309

RESUMEN

T cell activation, proliferation, function, and differentiation are tightly linked to proper metabolic reprogramming and regulation. By using [U-13C]glucose tracing, we reveal a critical role for GOT1 in promoting CD8+ T cell effector differentiation and function. Mechanistically, GOT1 enhances proliferation by maintaining intracellular redox balance and serine-mediated purine nucleotide biosynthesis. Further, GOT1 promotes the glycolytic programming and cytotoxic function of cytotoxic T lymphocytes via posttranslational regulation of HIF protein, potentially by regulating the levels of α-ketoglutarate. Conversely, genetic deletion of GOT1 promotes the generation of memory CD8+ T cells.


Asunto(s)
Linfocitos T CD8-positivos , Células T de Memoria , Linfocitos T CD8-positivos/metabolismo , Linfocitos T Citotóxicos , Diferenciación Celular/genética , Glucosa/metabolismo , Memoria Inmunológica/genética
8.
J Immunol ; 209(12): 2287-2291, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36469844

RESUMEN

The mechanistic target of rapamycin is an essential regulator of T cell metabolism and differentiation. In this study, we demonstrate that serum- and glucocorticoid-regulated kinase 1 (SGK1), a downstream node of mechanistic target of rapamycin complex 2 signaling, represses memory CD8+ T cell differentiation. During acute infections, murine SGK1-deficient CD8+ T cells adopt an early memory precursor phenotype leading to more long-lived memory T cells. Thus, SGK1-deficient CD8+ T cells demonstrate an enhanced recall capacity in response to reinfection and can readily reject tumors. Mechanistically, activation of SGK1-deficient CD8+ T cells results in decreased Foxo1 phosphorylation and increased nuclear translocation of Foxo1 to promote early memory development. Overall, SGK1 might prove to be a powerful target for enhancing the efficacy of vaccines and tumor immunotherapy.


Asunto(s)
Linfocitos T CD8-positivos , Diana Mecanicista del Complejo 2 de la Rapamicina , Células T de Memoria , Proteínas Serina-Treonina Quinasas , Animales , Ratones , Diferenciación Celular , Memoria Inmunológica/genética , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Sirolimus , Serina-Treonina Quinasas TOR/metabolismo
9.
Front Immunol ; 11: 572, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32328063

RESUMEN

Transplant tolerance in the absence of long-term immunosuppression has been an elusive goal for solid organ transplantation. Recently, it has become clear that metabolic reprogramming plays a critical role in promoting T cell activation, differentiation, and function. Targeting metabolism can preferentially inhibit T cell effector generation while simultaneously promoting the generation of T regulatory cells. We hypothesized that costimulatory blockade with CTLA4Ig in combination with targeting T cell metabolism might provide a novel platform to promote the induction of transplant tolerance.


Asunto(s)
Abatacept/farmacología , Desoxiglucosa/farmacología , Diazooxonorleucina/farmacología , Terapia de Inmunosupresión/métodos , Metformina/farmacología , Tolerancia al Trasplante/efectos de los fármacos , Aloinjertos , Animales , Glucólisis/efectos de los fármacos , Inmunosupresores/farmacología , Activación de Linfocitos/efectos de los fármacos , Ratones , Linfocitos T/efectos de los fármacos
10.
J Clin Invest ; 130(7): 3865-3884, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32324593

RESUMEN

Myeloid cells comprise a major component of the tumor microenvironment (TME) that promotes tumor growth and immune evasion. By employing a small-molecule inhibitor of glutamine metabolism, not only were we able to inhibit tumor growth, but we markedly inhibited the generation and recruitment of myeloid-derived suppressor cells (MDSCs). Targeting tumor glutamine metabolism led to a decrease in CSF3 and hence recruitment of MDSCs as well as immunogenic cell death, leading to an increase in inflammatory tumor-associated macrophages (TAMs). Alternatively, inhibiting glutamine metabolism of the MDSCs themselves led to activation-induced cell death and conversion of MDSCs to inflammatory macrophages. Surprisingly, blocking glutamine metabolism also inhibited IDO expression of both the tumor and myeloid-derived cells, leading to a marked decrease in kynurenine levels. This in turn inhibited the development of metastasis and further enhanced antitumor immunity. Indeed, targeting glutamine metabolism rendered checkpoint blockade-resistant tumors susceptible to immunotherapy. Overall, our studies define an intimate interplay between the unique metabolism of tumors and the metabolism of suppressive immune cells.


Asunto(s)
Inmunidad Celular , Macrófagos/inmunología , Células Supresoras de Origen Mieloide/inmunología , Neoplasias Experimentales/inmunología , Microambiente Tumoral/inmunología , Animales , Femenino , Glutamina/inmunología , Inmunoterapia , Macrófagos/patología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Células Supresoras de Origen Mieloide/patología , Neoplasias Experimentales/patología , Neoplasias Experimentales/terapia
11.
Science ; 366(6468): 1013-1021, 2019 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-31699883

RESUMEN

The metabolic characteristics of tumors present considerable hurdles to immune cell function and cancer immunotherapy. Using a glutamine antagonist, we metabolically dismantled the immunosuppressive microenvironment of tumors. We demonstrate that glutamine blockade in tumor-bearing mice suppresses oxidative and glycolytic metabolism of cancer cells, leading to decreased hypoxia, acidosis, and nutrient depletion. By contrast, effector T cells responded to glutamine antagonism by markedly up-regulating oxidative metabolism and adopting a long-lived, highly activated phenotype. These divergent changes in cellular metabolism and programming form the basis for potent antitumor responses. Glutamine antagonism therefore exposes a previously undefined difference in metabolic plasticity between cancer cells and effector T cells that can be exploited as a "metabolic checkpoint" for tumor immunotherapy.


Asunto(s)
Compuestos Azo/farmacología , Caproatos/farmacología , Glutamina/metabolismo , Inmunoterapia Adoptiva , Neoplasias Experimentales/inmunología , Neoplasias Experimentales/terapia , Escape del Tumor , Animales , Linfocitos T CD8-positivos/inmunología , Ciclo del Ácido Cítrico/efectos de los fármacos , Metabolismo Energético , Femenino , Glucosa/metabolismo , Glutamina/antagonistas & inhibidores , Memoria Inmunológica , Activación de Linfocitos , Linfocitos Infiltrantes de Tumor/inmunología , Masculino , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/metabolismo , Microambiente Tumoral
12.
Nat Rev Drug Discov ; 18(9): 669-688, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31363227

RESUMEN

Metabolic programming is emerging as a critical mechanism to alter immune cell activation, differentiation and function. Targeting metabolism does not completely suppress or activate the immune system but selectively regulates immune responses. The different metabolic requirements of the diverse cells that constitute an immune response provide a unique opportunity to separate effector functions from regulatory functions. Likewise, cells can be metabolically reprogrammed to promote either their short-term effector functions or long-term memory capacity. Studies in the growing field of immunometabolism support a paradigm of 'cellular selectivity based on demand', in which generic inhibitors of ubiquitous metabolic processes selectively affect cells with the greatest metabolic demand and have few effects on other cells of the body. Targeting metabolism, rather than particular cell types or cytokines, in metabolically demanding processes such as autoimmunity, graft rejection, cancer and uncontrolled inflammation could lead to successful strategies in controlling the pathogenesis of these complex disorders.


Asunto(s)
Autoinmunidad/inmunología , Sistema Inmunológico/efectos de los fármacos , Sistema Inmunológico/metabolismo , Inmunomodulación/efectos de los fármacos , Metabolismo/efectos de los fármacos , Neoplasias/inmunología , Neoplasias/metabolismo , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/metabolismo , Rechazo de Injerto/inmunología , Rechazo de Injerto/metabolismo , Humanos , Inflamación/inmunología , Inflamación/metabolismo , Modelos Biológicos
13.
Nature ; 566(7743): 264-269, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30700906

RESUMEN

The mechanistic target of rapamycin complex-1 (mTORC1) coordinates regulation of growth, metabolism, protein synthesis and autophagy1. Its hyperactivation contributes to disease in numerous organs, including the heart1,2, although broad inhibition of mTORC1 risks interference with its homeostatic roles. Tuberin (TSC2) is a GTPase-activating protein and prominent intrinsic regulator of mTORC1 that acts through modulation of RHEB (Ras homologue enriched in brain). TSC2 constitutively inhibits mTORC1; however, this activity is modified by phosphorylation from multiple signalling kinases that in turn inhibits (AMPK and GSK-3ß) or stimulates (AKT, ERK and RSK-1) mTORC1 activity3-9. Each kinase requires engagement of multiple serines, impeding analysis of their role in vivo. Here we show that phosphorylation or gain- or loss-of-function mutations at either of two adjacent serine residues in TSC2 (S1365 and S1366 in mice; S1364 and S1365 in humans) can bidirectionally control mTORC1 activity stimulated by growth factors or haemodynamic stress, and consequently modulate cell growth and autophagy. However, basal mTORC1 activity remains unchanged. In the heart, or in isolated cardiomyocytes or fibroblasts, protein kinase G1 (PKG1) phosphorylates these TSC2 sites. PKG1 is a primary effector of nitric oxide and natriuretic peptide signalling, and protects against heart disease10-13. Suppression of hypertrophy and stimulation of autophagy in cardiomyocytes by PKG1 requires TSC2 phosphorylation. Homozygous knock-in mice that express a phosphorylation-silencing mutation in TSC2 (TSC2(S1365A)) develop worse heart disease and have higher mortality after sustained pressure overload of the heart, owing to mTORC1 hyperactivity that cannot be rescued by PKG1 stimulation. However, cardiac disease is reduced and survival of heterozygote Tsc2S1365A knock-in mice subjected to the same stress is improved by PKG1 activation or expression of a phosphorylation-mimicking mutation (TSC2(S1365E)). Resting mTORC1 activity is not altered in either knock-in model. Therefore, TSC2 phosphorylation is both required and sufficient for PKG1-mediated cardiac protection against pressure overload. The serine residues identified here provide a genetic tool for bidirectional regulation of the amplitude of stress-stimulated mTORC1 activity.


Asunto(s)
Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Cardiopatías/prevención & control , Cardiopatías/fisiopatología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteína 2 del Complejo de la Esclerosis Tuberosa/química , Proteína 2 del Complejo de la Esclerosis Tuberosa/metabolismo , Animales , Autofagia , Células Cultivadas , Progresión de la Enfermedad , Activación Enzimática , Everolimus/farmacología , Femenino , Técnicas de Sustitución del Gen , Células HEK293 , Cardiopatías/genética , Cardiopatías/patología , Humanos , Hipertrofia/tratamiento farmacológico , Hipertrofia/patología , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , Ratones , Mutación , Miocitos Cardíacos/patología , Fosforilación , Fosfoserina/metabolismo , Presión , Ratas , Ratas Wistar , Serina/genética , Serina/metabolismo , Proteína 2 del Complejo de la Esclerosis Tuberosa/genética
14.
Cell ; 174(1): 72-87.e32, 2018 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-29861175

RESUMEN

Recent reports indicate that hypoxia influences the circadian clock through the transcriptional activities of hypoxia-inducible factors (HIFs) at clock genes. Unexpectedly, we uncover a profound disruption of the circadian clock and diurnal transcriptome when hypoxic cells are permitted to acidify to recapitulate the tumor microenvironment. Buffering against acidification or inhibiting lactic acid production fully rescues circadian oscillation. Acidification of several human and murine cell lines, as well as primary murine T cells, suppresses mechanistic target of rapamycin complex 1 (mTORC1) signaling, a key regulator of translation in response to metabolic status. We find that acid drives peripheral redistribution of normally perinuclear lysosomes away from perinuclear RHEB, thereby inhibiting the activity of lysosome-bound mTOR. Restoring mTORC1 signaling and the translation it governs rescues clock oscillation. Our findings thus reveal a model in which acid produced during the cellular metabolic response to hypoxia suppresses the circadian clock through diminished translation of clock constituents.


Asunto(s)
Hipoxia de la Célula , Relojes Circadianos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Aminoácidos Dicarboxílicos/farmacología , Animales , Proteínas CLOCK/metabolismo , Proteínas Portadoras/antagonistas & inhibidores , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular , Células Cultivadas , Relojes Circadianos/efectos de los fármacos , Medios de Cultivo/química , Factores Eucarióticos de Iniciación , Concentración de Iones de Hidrógeno , Subunidad alfa del Factor 1 Inducible por Hipoxia/antagonistas & inhibidores , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Lisosomas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , Ratones , Fosfoproteínas/antagonistas & inhibidores , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Proteína Homóloga de Ras Enriquecida en el Cerebro/metabolismo , Transducción de Señal/efectos de los fármacos , Linfocitos T/citología , Linfocitos T/metabolismo , Transcriptoma/efectos de los fármacos , Proteína 2 del Complejo de la Esclerosis Tuberosa/deficiencia , Proteína 2 del Complejo de la Esclerosis Tuberosa/genética
15.
J Immunol ; 201(2): 481-492, 2018 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-29884702

RESUMEN

The mechanistic/mammalian target of rapamycin (mTOR) has emerged as a critical integrator of signals from the immune microenvironment capable of regulating T cell activation, differentiation, and function. The precise role of mTOR in the control of regulatory T cell (Treg) differentiation and function is complex. Pharmacologic inhibition and genetic deletion of mTOR promotes the generation of Tregs even under conditions that would normally promote generation of effector T cells. Alternatively, mTOR activity has been observed to be increased in Tregs, and the genetic deletion of the mTOR complex 1 (mTORC1)-scaffold protein Raptor inhibits Treg function. In this study, by employing both pharmacologic inhibitors and genetically altered T cells, we seek to clarify the role of mTOR in Tregs. Our studies demonstrate that inhibition of mTOR during T cell activation promotes the generation of long-lived central Tregs with a memory-like phenotype in mice. Metabolically, these central memory Tregs possess enhanced spare respiratory capacity, similar to CD8+ memory cells. Alternatively, the generation of effector Tregs (eTregs) requires mTOR function. Indeed, genetic deletion of Rptor leads to the decreased expression of ICOS and PD-1 on the eTregs. Overall, our studies define a subset of mTORC1hi eTregs and mTORC1lo central Tregs.


Asunto(s)
Factores de Transcripción Forkhead/inmunología , Diana Mecanicista del Complejo 1 de la Rapamicina/inmunología , Transducción de Señal/inmunología , Linfocitos T Reguladores/inmunología , Animales , Linfocitos T CD8-positivos/inmunología , Diferenciación Celular/inmunología , Femenino , Memoria Inmunológica/inmunología , Proteína Coestimuladora de Linfocitos T Inducibles/inmunología , Activación de Linfocitos/inmunología , Masculino , Ratones , Receptor de Muerte Celular Programada 1/inmunología , Proteína Reguladora Asociada a mTOR/inmunología
16.
Cell Rep ; 20(10): 2439-2454, 2017 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-28877476

RESUMEN

Tissue-resident macrophages play critical roles in sentinel and homeostatic functions as well as in promoting inflammation and immunity. It has become clear that the generation of these cells is highly dependent upon tissue-specific cues derived from the microenvironment that, in turn, regulate unique differentiation programs. Recently, a role for GATA6 has emerged in the differentiation programming of resident peritoneal macrophages. We identify a critical role for mTOR in integrating cues from the tissue microenvironment in regulating differentiation and metabolic reprogramming. Specifically, inhibition of mTORC2 leads to enhanced GATA6 expression in a FOXO1 dependent fashion. Functionally, inhibition of mTORC2 promotes peritoneal resident macrophage generation in the resolution phase during zymosan-induced peritonitis. Also, mTORC2-deficient peritoneal resident macrophages displayed increased functionality and metabolic reprogramming. Notably, mTORC2 activation distinguishes tissue-resident macrophage proliferation and differentiation from that of M2 macrophages. Overall, our data implicate a selective role for mTORC2 in the differentiation of tissue-resident macrophages.


Asunto(s)
Macrófagos Peritoneales/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Peritonitis/metabolismo , Animales , Femenino , Citometría de Flujo , Proteína Forkhead Box O1/metabolismo , Factor de Transcripción GATA6/metabolismo , Immunoblotting , Macrófagos/metabolismo , Masculino , Diana Mecanicista del Complejo 2 de la Rapamicina/genética , Ratones , Fagocitosis/fisiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/fisiología , Zimosan/toxicidad
17.
Curr Opin Immunol ; 46: 82-88, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28521236

RESUMEN

It is becoming increasingly clear that metabolic reprogramming plays a critical role in T cell activation, differentiation and function. To this end, cellular metabolism not only meets the energetic demands of T cells but also provides critical substrates for their growth and function. Furthermore, metabolites themselves are emerging as key regulators of immune responses. As the details of how metabolic reprogramming regulates immune function are revealed, new potential targets for modulating immune responses have emerged. Indeed, the distinct metabolic demands of different T cell subsets make them exquisitely sensitive to pharmacologic inhibitors of metabolism. In this review, we will describe the emerging strategies whereby targeting metabolism can shape the T cell response.


Asunto(s)
Diferenciación Celular/inmunología , Metabolismo Energético , Activación de Linfocitos/inmunología , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Aminoácidos/metabolismo , Animales , Enfermedades Autoinmunes/tratamiento farmacológico , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/metabolismo , Autoinmunidad/efectos de los fármacos , Autoinmunidad/inmunología , Diferenciación Celular/efectos de los fármacos , Microambiente Celular/efectos de los fármacos , Microambiente Celular/inmunología , Metabolismo Energético/efectos de los fármacos , Glucólisis/efectos de los fármacos , Rechazo de Injerto/tratamiento farmacológico , Rechazo de Injerto/inmunología , Rechazo de Injerto/metabolismo , Humanos , Inmunoterapia , Activación de Linfocitos/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Terapia Molecular Dirigida , Transducción de Señal/efectos de los fármacos , Subgrupos de Linfocitos T/citología , Subgrupos de Linfocitos T/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo
18.
Science ; 354(6311): 419-420, 2016 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-27789830
19.
Ann Pharmacother ; 50(7): 534-40, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27147704

RESUMEN

BACKGROUND: Medication reconciliation to identify discrepancies is a National Patient Safety Goal. Increasing medication number and complex medication regimens are associated with discrepancies, nonadherence, and adverse events. The Medication Regimen Complexity Index (MRCI) integrates information about dosage form, dosing frequency, and additional directions. OBJECTIVE: This study evaluates the association of MRCI scores and medication number with medication discrepancies and commissions, a discrepancy subtype. METHODS: This was a retrospective cohort study of a convenience sample of 104 ambulatory care patients seen from April 2010 to July 2011 within the Department of Veterans Affairs. Primary outcomes included any medication discrepancy and commissions. Primary exposures included MRCI scores and medication number. Multivariable logistic regression models associated MRCI scores and medication number with discrepancies. Receiver operating characteristic (ROC) curves provided discrepancy thresholds. RESULTS: For the 104 patients analyzed, the median MRCI score was 25 (interquartile range [IQR] = 14-43), and the median medication number was 8 (IQR = 5-13); 60% of patients had any discrepancy, whereas 36% had a commission. In adjusted analyses, patients with MRCI scores ≥25 or medication number ≥8 were more likely to have commissions (odds ratio [OR] = 3.64, 95% CI = 1.41-9.41; OR = 4.51, 95% CI = 1.73-11.73, respectively). The unadjusted ROC threshold for commissions was 36 for MRCI (sensitivity, 59%; specificity, 82%) and 9 for medication number (sensitivity 68%; specificity 67%). CONCLUSION: Patients with either MRCI scores ≥25 or ≥8 medications were more likely to have commissions. Given equal performance in predicting discrepancies, the efficiency and simplicity of medication number supports its use in identifying patients for intensive medication review beyond medication reconciliation.


Asunto(s)
Atención Ambulatoria/estadística & datos numéricos , Prescripciones de Medicamentos/estadística & datos numéricos , Revisión de la Utilización de Medicamentos/métodos , Conciliación de Medicamentos/estadística & datos numéricos , Polifarmacia , Anciano , Atención Ambulatoria/métodos , Protocolos Clínicos , Prescripciones de Medicamentos/clasificación , Prescripciones de Medicamentos/normas , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Femenino , Humanos , Modelos Logísticos , Masculino , Persona de Mediana Edad , Análisis Multivariante , Evaluación del Resultado de la Atención al Paciente , Estudios Retrospectivos , Estados Unidos , United States Department of Veterans Affairs , Veteranos
20.
Nat Immunol ; 17(6): 704-11, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27064374

RESUMEN

The asymmetric partitioning of fate-determining proteins has been shown to contribute to the generation of CD8(+) effector and memory T cell precursors. Here we demonstrate the asymmetric partitioning of mTORC1 activity after the activation of naive CD8(+) T cells. This results in the generation of two daughter T cells, one of which shows increased mTORC1 activity, increased glycolytic activity and increased expression of effector molecules. The other daughter T cell has relatively low mTORC1 activity and increased lipid metabolism, expresses increased amounts of anti-apoptotic molecules and subsequently displays enhanced long-term survival. Mechanistically, we demonstrate a link between T cell antigen receptor (TCR)-induced asymmetric expression of amino acid transporters and RagC-mediated translocation of mTOR to the lysosomes. Overall, our data provide important insight into how mTORC1-mediated metabolic reprogramming affects the fate decisions of T cells.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , División Celular/inmunología , Lisosomas/metabolismo , Complejos Multiproteicos/metabolismo , Células Precursoras de Linfocitos T/inmunología , Serina-Treonina Quinasas TOR/metabolismo , Animales , Diferenciación Celular , Supervivencia Celular , Células Cultivadas , Femenino , Glucólisis , Memoria Inmunológica , Metabolismo de los Lípidos , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Transporte de Proteínas , Receptores de Antígenos de Linfocitos T/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...