Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biomol Struct Dyn ; 42(5): 2464-2481, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37349948

RESUMEN

Epidermal growth factor receptor (EGFR) tyrosine kinases are overexpressed in several human cancers and could serve as a promising anti-cancer drug target. With this in view, the main aim of the present study was to identify spices having the potential to inhibit EGFR tyrosine kinase. The structure-based virtual screening of spice database consisting of 1439 compounds with EGFR tyrosine kinase (PDB ID: 3W32) was carried out using Glide. Top scored 18 hits (XP Glide Score ≥ -10.0 kcal/mol) was further docked with three EGFR tyrosine kinases and three EGFR T790M/L858R mutants using AutodockVina, followed by ADME filtration. The best three hits were further refined by Molecular Dynamics (MD) simulation and MM-GBSA-based binding energy calculation. The overall docking results of the selected hits with both EGFR and EGFR T790M/L858R were quite satisfactory and showed strong binding compared to the three coligands. Detailed MD analysis of CL_07, AC_11 and AS_49 also showed the stability of the protein-ligand complexes. Moreover, the hits were drug-like, and MM-GBSA binding free energy of CL_07 and AS_49 was established to be far better. AC_11 was found to be similar to the known inhibitor Gefitinib. Most of the potential hits are available in Allium cepa, CL_07 and AS_49 available in Curcuma longa and Allium sativum, respectively. Therefore, these three spices could be used as a potential therapeutic candidate against cancer caused by overexpression of EGFR after validation of the observations of this study in in-vitro experiments. Further extensive work is needed to improve the scaffolds CL_07, AC_11, AC_17, and AS_49 as potential anti-cancer drugs.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Antineoplásicos , Neoplasias Pulmonares , Humanos , Simulación de Dinámica Molecular , Receptores ErbB/metabolismo , Especias , Simulación del Acoplamiento Molecular , Mutación , Inhibidores de Proteínas Quinasas/química , Neoplasias Pulmonares/tratamiento farmacológico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Tirosina
2.
ACS Med Chem Lett ; 14(12): 1754-1759, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38116435

RESUMEN

Serotogenic toxicity is a major hurdle associated with Linezolid in the treatment of drug-resistant tuberculosis (TB) due to the inhibition of monoamine oxidase (MAO) enzymes. Azole compounds demonstrate structural similarities to the recognized anti-TB drug Linezolid, making them intriguing candidates for repurposing. Therefore, we have repurposed azoles (Posaconazole, Itraconazole, Miconazole, and Clotrimazole) for the treatment of drug-resistant TB with the anticipation of their selectivity in sparing the MAO enzyme. The results of repurposing revealed that Clotrimazole showed equipotent activity against the Mycobacterium tuberculosis (Mtb) H37Rv strain compared to Linezolid, with a minimal inhibitory concentration (MIC) of 2.26 µM. Additionally, Clotrimazole exhibited reasonable MIC50 values of 0.17 µM, 1.72 µM, 1.53 µM, and 5.07 µM against the inhA promoter+, katG+, rpoB+, and MDR clinical Mtb isolates, respectively, compared to Linezolid. Clotrimazole also exhibited 3.90-fold less inhibition of MAO-A and 50.35-fold less inhibition of MAO-B compared to Linezolid, suggesting a reduced serotonergic toxicity burden.

3.
J Biomol Struct Dyn ; 41(19): 10136-10160, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-36519503

RESUMEN

In this study, two novel derivatives of naphthalene-2-sulfonic acid: 6-(((1S,5R)-3,5-dichloro-2,4,6-triazabicyclo [z3.1.0]hex-3-en-1-yl)amino)-5-((E)-phenyldiazenyl)naphthalene-2-sulfonic acid (DTPS1) and (E)-6-((4,6-dichloro-1,3,5-triazine2-yl)amino)-4-hydroxy-3-(phenyldiazenyl)naphthalene-2-sulfonic acid (DTPS2) have been synthesized and characterized using FT-IR, UV-vis, and NMR spectroscopic techniques. Applying density functional theory (DFT) at the B3LYP, APFD, PBEPBE, HCTH, TPSSTPSS, and ωB97XD/aug-cc-pVDZ level of theories for the electronic structural properties. In-vitro analysis, molecular docking, molecular dynamic (MD) simulation of the compounds was conducted to investigate the anti-inflammatory potential using COXs enzymes. Docking indicates binding affinity of -9.57, -9.60, -6.77 and -7.37 kcal/mol for DTPS1, DTPS2, Ibuprofen and Diclofenac which agrees with in-vitro assay. Results of MD simulation, indicates sulphonic group in DTPS1 has > 30% interaction with the hydroxyl and oxygen atoms in amino acid residues, but > 35% interaction with the DTPS2. It can be said that the DTPS1 and DTPS2 can induce inhibitory effect on COXs to halt biosynthesis of prostaglandins (PGs), a chief mediator of inflammation and pain in mammals.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Antiinflamatorios , Simulación de Dinámica Molecular , Animales , Simulación del Acoplamiento Molecular , Espectroscopía Infrarroja por Transformada de Fourier , Antiinflamatorios/farmacología , Percepción , Mamíferos
4.
J Biomol Struct Dyn ; 41(20): 10388-10395, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-36524470

RESUMEN

Diabetes mellitus (DM) is a group of metabolic disorders characterised by chronic hyperglycaemia. DM is currently one of the top ten causes of death in humans. Chronic hyperglycaemia in DM leads to long-term damage and failure of different organs in the body. Type 2 DM (T2D) is the most common DM form, characterised by peripheral insulin resistance, relative insulin deficiency, impaired hepatic glucose production regulation and pancreatic ß cell dysfunction. The human pancreatic α-amylase (HPA) inhibitor is currently one of the most effective methods developed to inhibit hyperglycaemia in T2D patients. However, the current standard drug available, acarbose, has been associated with severe side effects following prolonged use in patients. Therefore, an alternative drug capable of effectively inhibiting HPA with minimal side effects is required. Based on our previous study, we further explored the therapeutic potential of quercetin and ombuin via molecular dynamics (MD) simulation. The Desmond Simulation Package was used to run 100-ns MD simulations to examine the steady nature and conformational stability of the ligand-HPA complexes. Post-simulation molecular mechanics-generalised born surface area (MM-GBSA) analysis of HPA's binding free energy with quercetin and ombuin was explored. The lead compounds' drug-likeness, absorption, distribution, metabolism and elimination properties were also studied using the SwissADME tool. These results indicate that quercetin and ombuin have great potential as anti-DM drugs with more favourable properties than acarbose.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Diabetes Mellitus Tipo 2 , Hiperglucemia , Humanos , Acarbosa , Simulación de Dinámica Molecular , Quercetina/farmacología , alfa-Amilasas Pancreáticas , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Simulación del Acoplamiento Molecular
5.
J Biomol Struct Dyn ; 41(19): 9256-9266, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-36411738

RESUMEN

Candidates generated from unsaturated ketone (chalcone) demonstrated as strong, reversible and specific monoamine oxidase-B (MAO-B) inhibitory activity. For the research on MAO-B inhibition, our team has synthesized and evaluated a panel of aldoxime-chalcone ethers (ACE) and hydroxylchalcones (HC). The MAO-B inhibitory activity of several candidates is in the micro- to nanomolar range in these series. The purpose of this research was to develop predictive QSAR models and look into the relation between MAO-B inhibition by aldoxime and hydroxyl-functionalized chalcones. It was shown that the molecular descriptors ETA Shape P, MDEO-12, ETA dBetaP, SpMax1 Bhi and ETA EtaP B are significant in the inhibitory action of the MAO-B target. Using the current 2D QSAR models, potential chalcone-based MAO-B inhibitors might be created. The lead molecules were further analyzed by the detailed molecular dynamics study to establish the stability of the ligand-enzyme complex.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Chalcona , Chalconas , Chalconas/farmacología , Inhibidores de la Monoaminooxidasa/farmacología , Simulación de Dinámica Molecular , Relación Estructura-Actividad Cuantitativa , Monoaminooxidasa , Relación Estructura-Actividad , Simulación del Acoplamiento Molecular
6.
J Biomol Struct Dyn ; 41(18): 9022-9038, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36325982

RESUMEN

Alzheimer's disease (AD) is a progressive and fatal neurodegenerative disease that is characterized by memory and cognitive impairments that predominantly affects the elderly and is the most common cause of dementia. As is known, the AChE enzyme consists of two parts. In this work, 10 new hydrazones (3a-3j) were designed and synthesized. Naphthalene, indole, benzofuran and benzothiophene rings were used to interact with the PAS region. 4-fluorophenyl and 4-fluorobenzyl structures were preferred for interaction with the CAS region. In biological activity studies, the AChE and BChE inhibitory potentials of all compounds were evaluated using the in vitro Ellman method. The biological evaluation showed that compounds 3i and 3j displayed significant activity against AChE. The compounds 3i and 3j displayed IC50 values of 0.034 and 0.027 µM against AChE, respectively. The reference drug donepezil (IC50 = 0.021 µM) also displayed a significant inhibition against AChE. In addition, the antioxidant activities of the compounds were also evaluated. Derivatives 3i and 3j, which emerged active from both in vitro activity studies, were subjected to in vitro PAMPA tests to determine BBB permeability. Further docking simulation also revealed that these compounds (3i, 3j and donepezil) interacted with the enzyme active site in a similar manner to donepezil. A few parameters derived from MD simulation trajectories were computed and validated for the protein-ligand complex's stability under the dynamic conditions.Communicated by Ramaswamy H. Sarma.

7.
Front Microbiol ; 13: 1060554, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36523825

RESUMEN

The chlorpyrifos-mineralizing rice root endophyte Enterobacter sp. HSTU-ASh6 strain was identified, which enormously enhanced the growth of tomato plant under epiphytic conditions. The strain solubilizes phosphate and grew in nitrogen-free Jensen's medium. It secreted indole acetic acid (IAA; 4.8 mg/mL) and ACC deaminase (0.0076 µg/mL/h) and hydrolyzed chlorpyrifos phosphodiester bonds into 3,5,6-trichloro-2-pyridinol and diethyl methyl-monophosphate, which was confirmed by Gas Chromatography - Tandem Mass Spectrometry (GC-MS/MS) analysis. In vitro and in silico (ANI, DDH, housekeeping genes and whole genome phylogenetic tree, and genome comparison) analyses confirmed that the strain belonged to a new species of Enterobacter. The annotated genome of strain HSTU-ASh6 revealed a sets of nitrogen-fixing, siderophore, acdS, and IAA producing, stress tolerance, phosphate metabolizing, and pesticide-degrading genes. The 3D structure of 28 potential model proteins that can degrade pesticides was validated, and virtual screening using 105 different pesticides revealed that the proteins exhibit strong catalytic interaction with organophosphorus pesticides. Selected docked complexes such as α/ß hydrolase-crotoxyphos, carboxylesterase-coumaphos, α/ß hydrolase-cypermethrin, α/ß hydrolase-diazinon, and amidohydrolase-chlorpyrifos meet their catalytic triads in visualization, which showed stability in molecular dynamics simulation up to 100 ns. The foliar application of Enterobacter sp. strain HSTU-ASh6 on tomato plants significantly improved their growth and development at vegetative and reproductive stages in fields, resulting in fresh weight and dry weight was 1.8-2.0-fold and 1.3-1.6-fold higher in where urea application was cut by 70%, respectively. Therefore, the newly discovered chlorpyrifos-degrading species Enterobacter sp. HSTU-ASh6 could be used as a smart biofertilizer component for sustainable tomato cultivation.

8.
Indian J Tuberc ; 69(3): 282-304, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35760478

RESUMEN

Tuberculosis is considered as a leading health issue globally. Even though, the todays first line anti-mycobacterial treatments used in the hospital have low deaths, multidrug-resistance forms of the ailment have now spread globally and become a major issue. The wide-ranging biodiversity of medicinal plants, ocean animals have gained considerable attention for drug discovery in previous spans, and the emergence of TB drug resistance has inspired interest in judging natural products (NPs) to cure this disease. Till now, several compounds have been isolated from natural sources with anti-mycobacterial activity, few of which demonstrate significant activity and have the potential for further development. Worldwide huge natural flora and fauna are existing, this flora and fauna must be investigated for new potent lead against infectious TB. This review systematically surveys various classes of terpenoid molecules obtained from different medicinal plants, fungi, sponges, and sea plumes with anti-TB activity, which could be useful for further optimization and development in this field.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Animales , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Descubrimiento de Drogas , Humanos , Terpenos/farmacología , Terpenos/uso terapéutico , Tuberculosis/tratamiento farmacológico
9.
Antibiotics (Basel) ; 11(5)2022 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-35625210

RESUMEN

A major global health risk has been witnessed with the development of drug-resistant bacteria and multidrug-resistant pathogens linked to significant mortality. Coumarins are heterocyclic compounds belonging to the benzophenone class enriched in different plants. Coumarins and their derivatives have a wide range of biological activity, including antibacterial, anticoagulant, antioxidant, anti-inflammatory, antiviral, antitumour, and enzyme inhibitory effects. In the past few years, attempts have been reported towards the optimization, synthesis, and evaluation of novel coumarin analogues as antimicrobial agents. Several coumarin-based antibiotic hybrids have been developed, and the majority of them were reported to exhibit potential antibacterial effects. In the present work, studies reported from 2016 to 2020 about antimicrobial coumarin analogues are the focus. The diverse biological spectrum of coumarins can be attributed to their free radical scavenging abilities. In addition to various synthetic strategies developed, some of the structural features include a heterocyclic ring with electron-withdrawing/donating groups conjugated with the coumarin nucleus. The suggested structure-activity relationship (SAR) can provide insight into how coumarin hybrids can be rationally improved against multidrug-resistant bacteria. The present work demonstrates molecular insights for coumarin derivatives having antimicrobial properties from the recent past. The detailed SAR outcomes will benefit towards leading optimization during the discovery and development of novel antimicrobial therapeutics.

10.
Pharmaceuticals (Basel) ; 15(3)2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35337070

RESUMEN

Isatin (1H indole 2, 3-dione) is a heterocyclic, endogenous lead molecule recognized in humans and different plants. The isatin nucleus and its derivatives are owed the attention of researchers due to their diverse pharmacological activities such as anticancer, anti-TB, antifungal, antimicrobial, antioxidant, anti-inflammatory, anticonvulsant, anti-HIV, and so on. Many research chemists take advantage of the gentle structure of isatins, such as NH at position 1 and carbonyl functions at positions 2 and 3, for designing biologically active analogues via different approaches. Literature surveys based on reported preclinical, clinical, and patented details confirm the multitarget profile of isatin analogues and thus their importance in the field of medicinal chemistry as a potent chemotherapeutic agent. This review represents the recent development of isatin analogues possessing potential pharmacological action in the years 2016-2020. The structure-activity relationship is also discussed to provide a pharmacophoric pattern that may contribute in the future to the design and synthesis of potent and less toxic therapeutics.

11.
Int J Biol Macromol ; 190: 441-455, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34506858

RESUMEN

A novel esterase (est3S) gene, 1026 bp in size, was cloned from a metagenomic library made of uncultured microorganisms from the contents of cow rumen. The esterolytic enzyme (Est3S) is composed of 342 amino acids and shows the highest identity with EstGK1 (71.7%) and EstZ3 (63.78%) esterases from the uncultured bacterium. The Est3S did not cluster in any up-to-date classes (I to XVIII) of esterase and lipase. Est3S protein molecular weight was determined to be 38 kDa by gel electrophoresis and showed optimum activity at pH 7.0 and 40 °C and is partially resistant to organic solvents. Est3S activity was enhanced by K+, Na+, Mg2+, and Ca2+ and its highest activity was observed toward the short-chain p-nitrophenyl esters. Additionally, Est3S can degrade chlorpyrifos (CP) and methyl parathion (70% to 80%) in an hour. A mutated Est3S (Ser132-Ala132) did not show any activity toward CP and ester substrates. Notably, the GHS132QG motif is superimposed with the homolog esterase and cutinase-like esterase. Therefore, Ser132 is the critical amino acid like other esterases. The Est3S is relatively stable with ester compounds, and the methyl parathion complex was confirmed by molecular dynamics simulation. NOVELTY STATEMENT: A novel esterase gene (est3S) expressing esters and organophosphorus insecticide degradation traits was isolated from the uncultured bacterium in the contents of cow rumen. The Est3S protein did not cluster in any up-to-date classes (I to XVIII) of esterase/lipase proteins. Est3S was stable with the ligands up to 100 ns during the molecular dynamic simulations.


Asunto(s)
Esterasas/genética , Biblioteca de Genes , Metagenómica , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Compuestos Organofosforados/metabolismo , Rumen/enzimología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Biocatálisis , Dominio Catalítico , Bovinos , Clonación Molecular , Esterasas/química , Esterasas/aislamiento & purificación , Esterasas/metabolismo , Cinética , Ligandos , Peso Molecular , Filogenia , Mapeo Físico de Cromosoma , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato
12.
Bioorg Chem ; 115: 105133, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34329993

RESUMEN

Novel chemotherapeutic agents against multidrug resistant-tuberculosis (MDR-TB) are urgently needed at this juncture to save the life of TB-infected patients. In this work, we have synthesized and characterized novel isatin hydrazones 4(a-o) and their thiomorpholine tethered analogues 5(a-o). All the synthesized compounds were initially screened for their anti-mycobacterial activity against the H37Rv strain of Mycobacterium tuberculosis (MTB) under level-I testing. Remarkably, five compounds 4f, 4h, 4n, 5f and 5m (IC50 = 1.9 µM to 9.8 µM) were found to be most active, with 4f (IC50 = 1.9 µM) indicating highest inhibition of H37Rv. These compounds were further evaluated at level-II testing against the five drug-resistant strains such as isoniazid-resistant strains (INH-R1 and INH-R2), rifampicin-resistant strains (RIF-R1 and RIF-R2) and fluoroquinolone-resistant strain (FQ-R1) of MTB. Interestingly, 4f and 5f emerged as the most potent compounds with IC50 of 3.6 µM and 1.9 µM against RIF-R1 MTB strain, followed by INH-R1 MTB strain with IC50 of 3.5 µM and 3.4 µM, respectively. Against FQ-R1 MTB strain, the lead compounds 4f and 5f displayed excellent inhibition at IC50 5.9 µM and 4.9 µM, respectively indicating broad-spectrum of activity. Further, molecular docking, ADME pharmacokinetic and molecular dynamics simulations of the compounds were performed against the DNA gyrase B and obtained encouraging results.


Asunto(s)
Antituberculosos/farmacología , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Hidrazonas/química , Isatina/química , Morfolinas/química , Mycobacterium tuberculosis/efectos de los fármacos , Antituberculosos/química , Antituberculosos/metabolismo , Sitios de Unión , Supervivencia Celular/efectos de los fármacos , Girasa de ADN/química , Girasa de ADN/metabolismo , Diseño de Fármacos , Semivida , Humanos , Hidrazonas/metabolismo , Hidrazonas/farmacología , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Rifampin/farmacología , Relación Estructura-Actividad
13.
J Biomol Struct Dyn ; 39(4): 1491-1505, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32102624

RESUMEN

Third generation EGFR inhibitor osimertinib was approved as the first-line treatment for EGFR T790M mutation-positive Non-Small Cell Lung Cancer (NSCLC) patients in 2017. However, EGFR tertiary Cys797 to Ser797 (C797S) point mutation emanate rapidly after treatment of osimertinib, which is undruggable mutation to the all existing drugs. Recently, EAI045 fourth-generation allosteric EGFR inhibitor has been reported, which binds away from the ATP-binding site and not rely on Cys 797 binding. Here, we are reporting compound ZINC20531199 by virtual based screening studies as allosteric inhibitor to overcome the EGFR T790M/C797S Tyrosine Kinase (TK) mutation problem. Molecular Dynamics simulation for 10 ns further suggested that docked compound ZINC20531199 was stable into the allosteric pocket of the C797S EGFR tyrosine kinase. In silico pharmacokinetic predictions of the virtually screened compounds are within the defined range described for human use. Results indicate that the virtual screened compounds could be potential leads for the further development of new allosteric EGFR T790M/C797S inhibitors to overcome the problem of drug resistance.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Compuestos de Anilina , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Resistencia a Antineoplásicos/genética , Detección Precoz del Cáncer , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Simulación de Dinámica Molecular , Mutación , Inhibidores de Proteínas Quinasas/farmacología
14.
J Biomol Struct Dyn ; 39(8): 2838-2856, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-32276580

RESUMEN

Third generation EGFR inhibitor osimertinib was approved as the first-line treatment for EGFR T790M mutation-positive Non-Small Cell Lung Cancer (NSCLC) patients in 2017. However, EGFR tertiary Cys797 to Ser797 (C797S) point mutation emanate rapidly after treatment of osimertinib, which is undruggable mutation to the all existing drugs. In this work, we have reported the novel T790M/C797S-EGFR Tyrosine Kinase inhibitors using BREED based de novo hybridization approach. BREED generates novel inhibitors from structures of known ligands bound to a common target. Among the generated hybridised breed compounds, the top best scorer breed molecules were breed 436, breed 530, breed 450, breed 562 and breed 313. Molecular Dynamics simulation of breed 436 for 10 ns further suggested that docked compound was stable into the pocket of the T790M/C797S-EGFR Tyrosine Kinase. In silico pharmacokinetic predictions of the breed hybridised compounds were within the defined range described for human use.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Compuestos de Anilina , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Resistencia a Antineoplásicos/genética , Receptores ErbB/genética , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Mutación , Inhibidores de Proteínas Quinasas/farmacología
15.
Chem Biodivers ; 17(8): e2000237, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32469443

RESUMEN

Drug resistance tuberculosis is one of the challenging tasks that dictates the desperate need for the development of new antitubercular agents which operate via novel modes of action. Here, we are reporting on 4-aminoquinazolines as M. tuberculosis N-acetylglucosamine-1-phosphate uridyltransferase (GlmUMTB ) inhibitors to overcome the problem of the MDR-TB. Amongst the synthesized compounds, two of them were observed to be the effective compounds of the series (IC50 =6.4 µM (H37Rv), MIC=25 µM (MDR-TB) and IC50 =2.9 µM (H37Rv), MIC=6.25 µM (MDR-TB), respectively).


Asunto(s)
Antituberculosos/farmacología , Inhibidores Enzimáticos/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Nucleotidiltransferasas/antagonistas & inhibidores , Quinazolinas/farmacología , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Análisis Espectral/métodos
16.
J Infect Public Health ; 13(4): 472-479, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32139293

RESUMEN

BACKGROUND: The present work is an extension of ongoing efforts toward the development and identification of new molecules as monotherapy displaying anti-inflammatory and anti-infective activities and a wide-range of gastrointestinal selectivity. A series of novel set of trisubstituted thiazole compounds (AR-17a to AR-27a) have synthesized and evaluated for their in-vitro and in-vivo anti-inflammatory activities. Synthesized trisubstituted thiazole compounds were also evaluated for their potential antibacterial activity against clinical pathogens causing infectious disease. MATERIAL AND METHOD: The structures of synthesized compounds were characterized by FTIR, 1H NMR, Mass spectroscopic techniques and evaluated for their in-vitro and in-vivo anti-inflammatory effects using the human red blood cell (HRBC) membrane stabilization method and a carrageenan-induced rat paw oedema model, respectively, Diclofenac sodium and Ibuprofen were used as standard drugs. The synthesized compounds AR-17atoAR-27a screened for their in-vitro antibacterial activity against the gram-positive bacteria Staphylococcus aureus (ATCC25923) and Enterococcus faecalis (ATCC29212) and the gram-negative bacteria Escherichia coli (ATCC8739) and Pseudomonas aeruginosa (ATCC9027) using ciprofloxacin and cefdinir as standard drugs. RESULT: Compounds AR-17a and AR-27a elicited maximum anti-inflammatory activity, providing 59% and 61% protection at 20mg/kg, respectively, in the inflamed paw model. Among the tested compounds, AR-17a (6.25), (54) and AR-27a (1.56), (52) had the least minimum inhibitory concentration values and the highest zone of inhibition, indicating their marked antibacterial activities. The lowest conc. were observed at 1.56, 6.25µg/mL for inhibition of bacteria by most of the compounds. CONCLUSION: Novel set of trisubstituted thiazole compounds (AR-17a to AR-27a) have synthesized and characterized successfully. The preliminary screening revealed that these compounds possess promising anti-inflammatory and antibacterial activities. In addition, the objective of the study was achieved with few of the promising structures like AR-17a to AR-27a, which are prove to be potential monotherapy candidates for the treatment of chronic inflammatory diseases and bacterial infections.


Asunto(s)
Antibacterianos/farmacología , Antiinflamatorios/farmacología , Tiazoles/farmacología , Animales , Antibacterianos/síntesis química , Antiinflamatorios/síntesis química , Edema/tratamiento farmacológico , Femenino , Fluoroquinolonas/síntesis química , Fluoroquinolonas/farmacología , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Masculino , Pruebas de Sensibilidad Microbiana , Ratas , Relación Estructura-Actividad , Tiazoles/síntesis química
17.
Biol Trace Elem Res ; 193(1): 174-184, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30825159

RESUMEN

The use of cisplatin (CP) in chemotherapy of resistant cancers is limited due to its dose-dependent nephrotoxicity. Disulfiram (DSF), the aversion therapy for alcoholism, has recently emerged as an anticancer and chemopreventive agent. Its anticancer activity is potentiated in the presence of copper. However, such use of copper leads to several adverse effects. In the present study, the protective effect of DSF and its copper chelate (Cu-DEDC) against CP-induced nephrotoxicity in rats was evaluated. Nephrotoxicity was induced by a single intraperitoneal injection of CP (5 mg/kg). The treatment groups included control (vehicle treated), CP (CP-treated), CP + DSF (CP followed by DSF), CP + DSF + Cu (CP followed by DSF and CuCl2), CP + Cu-DEDC (CP followed by Cu-DEDC), and CP + AMF (amifostine pre-treated and CP-treated). The DSF, Cu-DEDC, and CuCl2 were administered orally at 50 mM/kg/day dose for 5 days post CP injection. AMF served as a standard chemo protectant, administered intravenously 30 min prior to CP. The markers of oxidative stress, inflammation, and kidney function estimated on the 6th day revealed that both DSF and Cu-DEDC significantly attenuated the CP-induced rise in the serum/urine creatinine and blood urea nitrogen (BUN). The CP-induced rise in serum alkaline phosphatase (ALPase) was reversed by these drugs. Both drugs reduced the levels of malondialdehyde and nitric oxide (NO) in kidney tissues. These drugs reversed CP-induced depletion of SOD, catalase, and GSH in the kidneys. There was a significant reduction in the CP-induced TNF-α and IL-1ß production along with prevention of histological alterations. Above observations indicate that DSF and Cu-DEDC may have significance as adjuvants to protect against CP-induced nephrotoxicity.


Asunto(s)
Cisplatino/efectos adversos , Cobre/farmacología , Disulfiram/farmacología , Riñón/metabolismo , Estrés Oxidativo/efectos de los fármacos , Insuficiencia Renal , Animales , Nitrógeno de la Urea Sanguínea , Cisplatino/farmacología , Creatinina/sangre , Riñón/patología , Masculino , Ratas , Ratas Wistar , Insuficiencia Renal/sangre , Insuficiencia Renal/inducido químicamente , Insuficiencia Renal/tratamiento farmacológico
18.
Int J Biol Macromol ; 104(Pt A): 799-812, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28648637

RESUMEN

The near future of drug delivery system would lie in the search of a versatile and innocuous material, based mostly on the natural resources. The tamarind seed xyloglucan (XG) is a natural neutral hemicellulose and a hydrophilic polysaccharide consisting of a main chain of glucan backbone with xylose and galactose side chains. XG is endowed with idiosyncratic mucoadhesive and in situ gelling properties which rated XG as an attractive, functional polymer for numerous drug delivery applications. In milieu of this, the present review is designed to underline the plausible potential of XG or XG-based systems in drug delivery. The feasibility of surface-tailoring, the flexibility of chemical-modification, and the possibility as ligand-conjugations grant XG an extraordinary consideration in the scientific territory. The authors are hopeful that the versatility of XG would meet the expectations of regulatory authorities and the XG-based products will serve the therapeutic needs of the community in the future, if sufficiently investigated and promising outcomes are obtained in human subjects.


Asunto(s)
Portadores de Fármacos , Glucanos , Xilanos , Fenómenos Químicos , Portadores de Fármacos/síntesis química , Portadores de Fármacos/química , Portadores de Fármacos/aislamiento & purificación , Glucanos/síntesis química , Glucanos/química , Glucanos/aislamiento & purificación , Humanos , Xilanos/síntesis química , Xilanos/química , Xilanos/aislamiento & purificación
19.
Bioorg Med Chem ; 25(10): 2713-2723, 2017 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-28366268

RESUMEN

The epidermal growth factor receptor (EGFR) T790M mutant is found in about 50% of clinically acquired resistance to gefitinib among patients with non-small cell lung cancer (NSCLC). New derivatives of 4(3H)-quinazolinones were synthesized and evaluated for their inhibitory activity against NSCLC. The results of the study demonstrated that compound 79, 7-chloro-3-(5-(4-methoxyphenyl)-1,3,4-thiadiazol-2-yl)-2-phenylquinazolin-4(3H)-one was found to be the most potent compounds of the series with IC50 value of 0.031µM against mutant T790M/L858R EGFR. Compounds 15, 51, 73, 75, 78, 79 and 96 were less potent against A549 (WT EGFR and k-Ras mutation) and HT-29 (non-special gene type) cells, showing a high safety index. The obtained results showed that compounds 15, 51, 73, 75, 78, 79 and 96 could be the promising template to overcome drug resistance mediated by the EGFR T790 Mutant.


Asunto(s)
Antineoplásicos/síntesis química , Diseño de Fármacos , Receptores ErbB/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/química , Quinazolinas/química , Células A549 , Antineoplásicos/química , Antineoplásicos/toxicidad , Sitios de Unión , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Proliferación Celular/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Receptores ErbB/metabolismo , Gefitinib , Células HT29 , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Simulación del Acoplamiento Molecular , Unión Proteica , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/uso terapéutico , Estructura Terciaria de Proteína , Quinazolinas/síntesis química , Quinazolinas/toxicidad , Relación Estructura-Actividad
20.
Indian J Tuberc ; 64(2): 119-128, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28410694

RESUMEN

Mycobacterium tuberculosis (MTB) infection has become an increasing health threat due to the worldwide emergence of multidrug-resistant MTB (MDR-MTB) strain. Isoniazid (pyridine) resistance problem is a complex process and is associated with mutations in several genes. However, the emergence of isoniazid (INH) resistant M. tuberculosis strains dictates the necessity for redesigning this old drug in order to create analogs effective against INH-resistant strains by using rational approach. In light of these findings, the present review discusses the synthesis, structural optimization, and modification in pyridine structure to combat the problem of multidrug-resistant tuberculosis.


Asunto(s)
Piridinas/química , Piridinas/uso terapéutico , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Resistencia a Medicamentos , Humanos , Estructura Molecular , Piridinas/síntesis química , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...