Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 2204, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38538579

RESUMEN

The naked mole-rat Heterocephalus glaber is a eusocial mammal exhibiting extreme longevity (37-year lifespan), extraordinary resistance to hypoxia and absence of cardiovascular disease. To identify the mechanisms behind these exceptional traits, metabolomics and RNAseq of cardiac tissue from naked mole-rats was compared to other African mole-rat genera (Cape, Cape dune, Common, Natal, Mahali, Highveld and Damaraland mole-rats) and evolutionarily divergent mammals (Hottentot golden mole and C57/BL6 mouse). We identify metabolic and genetic adaptations unique to naked mole-rats including elevated glycogen, thus enabling glycolytic ATP generation during cardiac ischemia. Elevated normoxic expression of HIF-1α is observed while downstream hypoxia responsive-genes are down-regulated, suggesting adaptation to low oxygen environments. Naked mole-rat hearts show reduced succinate levels during ischemia compared to C57/BL6 mouse and negligible tissue damage following ischemia-reperfusion injury. These evolutionary traits reflect adaptation to a unique hypoxic and eusocial lifestyle that collectively may contribute to their longevity and health span.


Asunto(s)
Longevidad , Oxígeno , Animales , Ratones , Longevidad/genética , Hipoxia/genética , Ratas Topo/genética , Isquemia
2.
Nat Rev Nephrol ; 18(8): 524-537, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35637381

RESUMEN

Chronic kidney disease (CKD) affects millions of people globally and, for most patients, the risk of developing cardiovascular disease is higher than that of progression to kidney failure. Moreover, mortality owing to cardiovascular complications in patients with CKD is markedly higher than in matched individuals from the general population. This mortality was traditionally thought to be driven by coronary heart disease but >75% of patients with CKD have left ventricular hypertrophy, which contributes to mortality, particularly sudden cardiac death. The aetiology of cardiac complications in CKD is multifactorial. In addition to haemodynamic overload, uraemic toxin accumulation and altered ion homeostasis, which are known to underlie left ventricular hypertrophy in CKD and drive cardiac dysfunction, we examine the role of myocardial metabolic remodelling in CKD. Uraemic cardiomyopathy is characterized by myriad cardiac metabolic maladaptations, including altered mitochondrial function, changes in myocardial substrate utilization, altered metabolic transporter function and expression, and impaired insulin response and phosphoinositide-3 kinase-AKT signalling, which collectively lead to impaired cardiac energetics. Interestingly, none of the standard treatments used to treat CKD target the metabolism of the uraemic heart directly. An improved understanding of the cardiac metabolic perturbations that occur in CKD might allow the development of novel treatments for uraemic cardiomyopathy.


Asunto(s)
Cardiomiopatías , Insuficiencia Renal Crónica , Cardiomiopatías/etiología , Corazón , Humanos , Hipertrofia Ventricular Izquierda/complicaciones , Miocardio , Insuficiencia Renal Crónica/complicaciones
3.
Sci Rep ; 12(1): 1111, 2022 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-35064159

RESUMEN

Preeclampsia is a cardiovascular pregnancy complication characterised by new onset hypertension and organ damage or intrauterine growth restriction. It is one of the leading causes of maternal and fetal mortality in pregnancy globally. Short of pre-term delivery of the fetus and placenta, treatment options are limited. Consequently, preeclampsia leads to increased cardiovascular disease risk in both mothers and offspring later in life. Here we aim to examine the impact of the reduced uterine perfusion pressure (RUPP) rat model of preeclampsia on the maternal cardiovascular system, placental and fetal heart metabolism. The surgical RUPP model was induced in pregnant rats by applying silver clips around the aorta and uterine arteries on gestational day 14, resulting in ~ 40% uterine blood flow reduction. The experiment was terminated on gestational day 19 and metabolomic profile of placentae, maternal and fetal hearts analysed using high-resolution 1H NMR spectroscopy. Impairment of uterine perfusion in RUPP rats caused placental and cardiac hypoxia and a series of metabolic adaptations: altered energetics, carbohydrate, lipid and amino acid metabolism of placentae and maternal hearts. Comparatively, the fetal metabolic phenotype was mildly affected. Nevertheless, long-term effects of these changes in both mothers and the offspring should be investigated further in the future.


Asunto(s)
Hipoxia/metabolismo , Placenta/metabolismo , Preeclampsia/metabolismo , Útero/irrigación sanguínea , Animales , Presión Sanguínea/fisiología , Simulación por Computador , Modelos Animales de Enfermedad , Femenino , Corazón Fetal/metabolismo , Humanos , Hipoxia/fisiopatología , Metabolómica , Modelos Biológicos , Placenta/irrigación sanguínea , Circulación Placentaria/fisiología , Preeclampsia/fisiopatología , Embarazo , Espectroscopía de Protones por Resonancia Magnética , Ratas , Útero/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...