Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(3)2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38338752

RESUMEN

More than 75% of traumatic brain injuries (TBIs) are mild (mTBI) and military service members often experience repeated combat-related mTBI. The chronic comorbidities concomitant with repetitive mTBI (rmTBI) include depression, post-traumatic stress disorder or neurological dysfunction. This study sought to determine a long noncoding RNA (lncRNA) expression signature in serum samples that correlated with rmTBI years after the incidences. Serum samples were obtained from Long-Term Impact of Military-Relevant Brain-Injury Consortium Chronic Effects of Neurotrauma Consortium (LIMBIC CENC) repository, from participants unexposed to TBI or who had rmTBI. Four lncRNAs were identified as consistently present in all samples, as detected via droplet digital PCR and packaged in exosomes enriched for CNS origin. The results, using qPCR, demonstrated that the lncRNA VLDLR-AS1 levels were significantly lower among individuals with rmTBI compared to those with no lifetime TBI. ROC analysis determined an AUC of 0.74 (95% CI: 0.6124 to 0.8741; p = 0.0012). The optimal cutoff for VLDLR-AS1 was ≤153.8 ng. A secondary analysis of clinical data from LIMBIC CENC was conducted to evaluate the psychological symptom burden, and the results show that lncRNAs VLDLR-AS1 and MALAT1 are correlated with symptoms of depression. In conclusion, lncRNA VLDLR-AS1 may serve as a blood biomarker for identifying chronic rmTBI and depression in patients.


Asunto(s)
Conmoción Encefálica , Lesiones Traumáticas del Encéfalo , ARN Largo no Codificante , Veteranos , Humanos , Veteranos/psicología , Conmoción Encefálica/epidemiología , Conmoción Encefálica/genética , Conmoción Encefálica/complicaciones , ARN Largo no Codificante/genética , Depresión/genética , Lesiones Traumáticas del Encéfalo/genética , Lesiones Traumáticas del Encéfalo/complicaciones
2.
Int J Mol Sci ; 24(18)2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37762628

RESUMEN

Type 2 diabetes mellitus is a chronic metabolic disease with no cure. Adipose tissue is a major site of systemic insulin resistance. Sortilin is a central component of the glucose transporter -Glut4 storage vesicles (GSV) which translocate to the plasma membrane to uptake glucose from circulation. Here, using human adipocytes we demonstrate the presence of the alternatively spliced, truncated sortilin variant (Sort_T) whose expression is significantly increased in diabetic adipose tissue. Artificial-intelligence-based modeling, molecular dynamics, intrinsically disordered region analysis, and co-immunoprecipitation demonstrated association of Sort_T with Glut4 and decreased glucose uptake in adipocytes. The results show that glucagon-like peptide-1 (GLP1) hormone decreases Sort_T. We deciphered the molecular mechanism underlying GLP1 regulation of alternative splicing of human sortilin. Using splicing minigenes and RNA-immunoprecipitation assays, the results show that GLP1 regulates Sort_T alternative splicing via the splice factor, TRA2B. We demonstrate that targeted antisense oligonucleotide morpholinos reduces Sort_T levels and improves glucose uptake in diabetic adipocytes. Thus, we demonstrate that GLP1 regulates alternative splicing of sortilin in human diabetic adipocytes.


Asunto(s)
Empalme Alternativo , Diabetes Mellitus Tipo 2 , Humanos , Adipocitos , Péptido 1 Similar al Glucagón/genética , Glucosa
3.
Sci Rep ; 13(1): 317, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36609440

RESUMEN

Shifts in normal aging set stage for neurodegeneration and dementia affecting 1 in 10 adults. The study demonstrates that lncRNA GAS5 is decreased in aged and Alzheimer's disease brain. The role and targets of lncRNA GAS5 in the aging brain were elucidated using a GAS5-targeting small molecule NPC86, a frontier in lncRNA-targeting therapeutic. Robust techniques such as molecular dynamics simulation of NPC86 binding to GAS5, in vitro functional assays demonstrating that GAS5 regulates insulin signaling, neuronal survival, phosphorylation of tau, and neuroinflammation via toll-like receptors support the role of GAS5 in maintaining healthy neurons. The study demonstrates the safety and efficacy of intranasal NPC86 treatment in aged mice to improve cellular functions with transcriptomic analysis in response to NPC86. In summary, the study demonstrates that GAS5 contributes to pathways associated with neurodegeneration and NPC86 has tremendous therapeutic potential to prevent the advent of neurodegenerative diseases and dementias.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Ratones , Animales , Insulina/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Enfermedades Neuroinflamatorias , Transducción de Señal , Modelos Animales de Enfermedad , Neuronas/metabolismo , MicroARNs/genética
4.
FASEB Bioadv ; 4(4): 235-253, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35415459

RESUMEN

Ovarian cancer is the deadliest malignant disease in women. Protein Kinase C delta (PRKCD; PKCδ) is serine/threonine kinase extensively linked to various cancers. In humans, PKCδ is alternatively spliced to PKCδI and PKCδVIII. However, the specific function of PKCδ splice variants in ovarian cancer has not been elucidated yet. Hence, we evaluated their expression in human ovarian cancer cell lines (OCC): SKOV3 and TOV112D, along with the normal T80 ovarian cells. Our results demonstrate a marked increase in PKCδVIII in OCC compared to normal ovarian cells. Therefore, we elucidated the role of PKCδVIII and the underlying mechanism of its expression in OCC. Using overexpression and knockdown studies, we demonstrate that PKCδVIII increases cellular survival and migration in OCC. Further, overexpression of PKCδVIII in T80 cells resulted in increased expression of Bcl2 and knockdown of PKCδVIII in OCC decreased Bcl2 expression. Using co-immunoprecipitations and immunocytochemistry, we demonstrate nuclear localization of PKCδVIII in OCC and further show increased association of PKCδVIII with Bcl2 and Bcl-xL in OCC. Using PKCδ splicing minigene, mutagenesis, siRNA and antisense oligonucleotides, we demonstrate that increased levels of alternatively spliced PKCδVIII in OCC is regulated by splice factor SRSF2. Finally, we verified that PKCδVIII levels are elevated in samples of human ovarian cancer tissue. The data presented here demonstrate that the alternatively spliced, signaling kinase PKCδVIII is a viable target to develop therapeutics to combat progression of ovarian cancer.

5.
Biology (Basel) ; 11(3)2022 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-35336800

RESUMEN

Chronic recalcitrant wounds result from delayed or slowed healing processes. Underlying inflammation is a substantial risk factor for impaired dermal wound healing and often leads to chronic wound-related sequelae. Human adipose stem cells (hASCs) have shown tremendous potential in regenerative medicine. The goal of this project was to improve the outcome of chronic wounds by harvesting the exosomes from hASCs for therapeutic intervention. The results demonstrate that long noncoding RNA GAS5 is highly enriched in hASC exosomes and, further, that GAS5 is central to promoting wound repair in vitro. To evaluate the outcome of wound healing in a chronic low-grade inflammatory environment, lipopolysaccharide-treated HDF cells were evaluated for their response to hASC exosome treatment. Ingenuity pathway analysis identified inflammation pathways and genes affected by exosomes in a GAS5-dependent manner. Using siRNA to deplete GAS5 in HDF, the results demonstrated that Toll-like receptor 7 (TLR7) expression levels were regulated by GAS5. Importantly, the results demonstrate that GAS5 regulates inflammatory pathway genes in a chronic inflammation environment. The results presented here demonstrate that hASC exosomes are a viable therapeutic that accelerate the healing of chronic recalcitrant wounds.

6.
Mol Cell Biol ; 41(3): e0033820, 2021 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-33288642

RESUMEN

Lithium chloride (LiCl) is commonly used in treatment of mood disorders; however, its usage leads to weight gain, which promotes metabolic disorders. Protein kinase C delta (PKCδ), a serine/threonine kinase, is alternatively spliced to PKCδI and PKCδII in 3T3-L1 cells. We previously demonstrated that PKCδI is the predominantly expressed isoform in 3T3-L1 preadipocytes. Here, we demonstrate that LiCl treatment decreases PKCδI levels, increases formation of lipid droplets, and increases oxidative stress. Hence, we investigated the molecular mechanisms underlying the regulation of PKCδI alternative splicing by LiCl. We previously demonstrated that the splice factor SFRS10 is essential for PKCδI splicing. Our results demonstrate that glycogen synthase kinase 3 beta (GSK3ß) phosphorylates SFRS10, and SFRS10 is in a complex with long noncoding RNA NEAT1 to promote PKCδI splicing. Using PKCδ splicing minigene and RNA immunoprecipitation assays, our results demonstrate that upon LiCl treatment, NEAT1 levels are reduced, GSK3ß activity is inhibited, and SFRS10 phosphorylation is decreased, which leads to decreased expression of PKCδI. Integration of the GSK3ß signaling pathway with the ribonucleoprotein complex of long noncoding RNA (lncRNA) NEAT1 and SFRS10 enables fine-tuning of PKCδI expression during adipogenesis. Knowledge of the molecular pathways impacted by LiCl provides an understanding of the ascent of obesity as a comorbidity in disease management.

7.
Endocrinology ; 158(1): 183-195, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-27841943

RESUMEN

Brain injury may be caused by trauma or may occur in stroke and neurodegenerative diseases. Because the central nervous system is unable to regenerate efficiently, there is utmost interest in the use of stem cells to promote neuronal survival. Of interest here are human adipose-derived stem cells (hASCs), which secrete factors that enhance regeneration and survival of neurons in sites of injury. We evaluated the effect of hASC secretome on immortalized mouse hippocampal cell line (HT22) after injury. Protein kinase C δ (PKCδ) activates survival and proliferation in neurons and is implicated in memory. We previously showed that alternatively spliced PKCδII enhances neuronal survival via B-cell lymphoma 2 Bcl2 in HT22 neuronal cells. Our results demonstrate that following injury, treatment with exosomes from the hASC secretome increases expression of PKCδII in HT22 cells and increases neuronal survival and proliferation. Specifically, we demonstrate that metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), a long noncoding RNA contained in the hASC exosomes mediates PKCδII splicing, thereby increasing neuronal survival. Using antisense oligonucleotides for MALAT1 and RNA immunoprecipitation assays, we demonstrate that MALAT1 recruits splice factor serine-arginine-rich splice factor 2 (SRSF2) to promote alternative splicing of PKCδII. Finally, we evaluated the role of insulin in enhancing hASC-mediated neuronal survival and demonstrated that insulin treatment dramatically increases the association of MALAT1 and SRSF2 and substantially increases survival and proliferation after injury in HT22 cells. In conclusion, we demonstrate the mechanism of action of hASC exosomes in increasing neuronal survival. This effect of hASC exosomes to promote wound healing can be further enhanced by insulin treatment in HT22 cells.


Asunto(s)
Células Madre Adultas/metabolismo , Neuronas/fisiología , Proteína Quinasa C-delta/metabolismo , ARN Largo no Codificante/fisiología , Empalme Alternativo , Animales , Línea Celular , Proliferación Celular , Supervivencia Celular , Exosomas/metabolismo , Humanos , Insulina , Ratones , Factores de Empalme Serina-Arginina/metabolismo
8.
Stem Cell Investig ; 3: 2, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27358894

RESUMEN

BACKGROUND: Adipose-derived stem cells (ASC) and its exosomes are gaining utmost importance in the field of regenerative medicine. The ASCs tested for their potential in wound healing are predominantly derived from the subcutaneous depot of lean donors. However, it is important to characterize the ASC derived from different adipose depots as these depots have clinically distinct roles. METHODS: We characterized the ASC derived from subcutaneous and omental depots from a lean donor (sc-ASCn and om-ASCn) and compared it to the ASC derived from an obese donor (sc-ASCo and om-ASCo) using flow cytometry and real time qPCR. RESULTS: We show that stem cell markers Oct4, Sal4, Sox15, KLF4 and BMI1 have distinct expression patterns in each ASC. We evaluated the secretome of the ASC and characterized their secreted exosomes. We show long noncoding RNAs (lncRNAs) are secreted by ASC and their expression varied between the ASC's derived from different depots. Protein kinase C delta (PKCδ) regulates the mitogenic signals in stem cells. We evaluated the effect of silencing PKCδ in sc-ASCn, om-ASCn, sc-ASCo and om-ASCo. Using ß-galactosidase staining, we evaluated the percentage of senescent cells in sc-ASCn, om-ASCn, sc-ASCo and om-ASCo. Our results also indicated that silencing PKCδ increases the percentage of senescent cells. CONCLUSIONS: Our case-specific study demonstrates a role of PKCδ in maintaining the adipose stem cell niche and importantly demonstrates depot-specific differences in adipose stem cells and their exosome content.

9.
J Biol Chem ; 289(46): 31662-31672, 2014 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-25261467

RESUMEN

Obesity is characterized by adipocyte hyperplasia and hypertrophy. We previously showed that PKCδ expression is dysregulated in obesity (Carter, G., Apostolatos, A., Patel, R., Mathur, A., Cooper, D., Murr, M., and Patel, N. A. (2013) ISRN Obes. 2013, 161345). Using 3T3L1 preadipocytes, we studied adipogenesis in vitro and showed that expression of PKCδ splice variants, PKCδI and PKCδII, have different expression patterns during adipogenesis (Patel, R., Apostolatos, A., Carter, G., Ajmo, J., Gali, M., Cooper, D. R., You, M., Bisht, K. S., and Patel, N. A. (2013) J. Biol. Chem. 288, 26834-26846). Here, we evaluated the role of PKCδI splice variant during adipogenesis. Our results indicate that PKCδI expression level is high in preadipocytes and decreasing PKCδI accelerated terminal differentiation. Our results indicate that PKCδI is required for mitotic clonal expansion of preadipocytes. We next evaluated the splice factor regulating the expression of PKCδI during 3T3L1 adipogenesis. Our results show TRA2B increased PKCδI expression. To investigate the molecular mechanism, we cloned a heterologous splicing PKCδ minigene and showed that inclusion of PKCδ exon 9 is increased by TRA2B. Using mutagenesis and a RNA-immunoprecipitation assay, we evaluated the binding of Tra2ß on PKCδI exon 9 and show that its association is required for PKCδI splicing. These results provide a better understanding of the role of PKCδI in adipogenesis. Determination of this molecular mechanism of alternative splicing presents a novel therapeutic target in the management of obesity and its co-morbidities.


Asunto(s)
Ciclo Celular , Regulación de la Expresión Génica , Proteínas Nucleares/metabolismo , Proteína Quinasa C-delta/metabolismo , Proteínas de Unión al ARN/metabolismo , Células 3T3-L1 , Adipocitos/citología , Adipogénesis , Empalme Alternativo , Animales , Apoptosis , Diferenciación Celular , Proliferación Celular , Ratones , Mutación , Factores de Empalme Serina-Arginina
10.
Carcinogenesis ; 33(1): 10-9, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22021906

RESUMEN

The objective of this research was to study the potential function of protein kinase C (PKC)-ι in cell cycle progression and proliferation in glioblastoma. PKC-ι is highly overexpressed in human glioma and benign and malignant meningioma; however, little is understood about its role in regulating cell proliferation of glioblastoma. Several upstream molecular aberrations and/or loss of PTEN have been implicated to constitutively activate the phosphatidylinositol (PI) (3)-kinase pathway. PKC-ι is a targeted mediator in the PI (3)-kinase signal transduction repertoire. Results showed that PKC-ι was highly activated and overexpressed in glioma cells. PKC-ι directly associated and phosphorylated Cdk7 at T170 in a cell cycle-dependent manner, phosphorylating its downstream target, cdk2 at T160. Cdk2 has a major role in inducing G(1)-S phase progression of cells. Purified PKC-ι phosphorylated both endogenous and exogenous Cdk7. PKC-ι downregulation reduced Cdk7 and cdk2 phosphorylation following PI (3)-kinase inhibition, phosphotidylinositol-dependent kinase 1 knockdown as well as PKC-ι silencing (by siRNA treatment). It also diminished cdk2 activity. PKC-ι knockdown inhibited overall proliferation rates and induced apoptosis in glioma cells. These findings suggest that glioma cells may be proliferating through a novel PI (3)-kinase-/PKC-ι/Cdk7/cdk2-mediated pathway.


Asunto(s)
Neoplasias Encefálicas/enzimología , Quinasas Ciclina-Dependientes/metabolismo , Glioblastoma/enzimología , Isoenzimas/fisiología , Fosfatidilinositol 3-Quinasas/fisiología , Proteína Quinasa C/fisiología , Transducción de Señal/fisiología , Apoptosis , Neoplasias Encefálicas/patología , Ciclo Celular , Línea Celular Tumoral , Quinasa 2 Dependiente de la Ciclina/metabolismo , Glioblastoma/patología , Humanos , Fosforilación , Proteínas Serina-Treonina Quinasas/fisiología , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora , Quinasa Activadora de Quinasas Ciclina-Dependientes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...