Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
iScience ; 26(8): 107360, 2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37554444

RESUMEN

Lineage switching can induce therapy resistance in cancer. Yet, how lineage fidelity is maintained and how it can be lost remain poorly understood. Here, we have used CRISPR-Cas9-based genetic screening to demonstrate that loss of SMARCB1, a member of the SWI/SNF chromatin remodeling complex, can confer an advantage to clear cell renal cell carcinoma (ccRCC) cells upon inhibition of the renal lineage factor PAX8. Lineage factor inhibition-resistant ccRCC cells formed tumors with morphological features, but not molecular markers, of neuroendocrine differentiation. SMARCB1 inactivation led to large-scale loss of kidney-specific epigenetic programs and restoration of proliferative capacity through the adoption of new dependencies on factors that represent rare essential genes across different cancers. We further developed an analytical approach to systematically characterize lineage fidelity using large-scale CRISPR-Cas9 data. An understanding of the rules that govern lineage switching could aid the development of more durable lineage factor-targeted and other cancer therapies.

2.
Nature ; 606(7916): 999-1006, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35676472

RESUMEN

Large-scale human genetic data1-3 have shown that cancer mutations display strong tissue-selectivity, but how this selectivity arises remains unclear. Here, using experimental models, functional genomics and analyses of patient samples, we demonstrate that the lineage transcription factor paired box 8 (PAX8) is required for oncogenic signalling by two common genetic alterations that cause clear cell renal cell carcinoma (ccRCC) in humans: the germline variant rs7948643 at 11q13.3 and somatic inactivation of the von Hippel-Lindau tumour suppressor (VHL)4-6. VHL loss, which is observed in about 90% of ccRCCs, can lead to hypoxia-inducible factor 2α (HIF2A) stabilization6,7. We show that HIF2A is preferentially recruited to PAX8-bound transcriptional enhancers, including a pro-tumorigenic cyclin D1 (CCND1) enhancer that is controlled by PAX8 and HIF2A. The ccRCC-protective allele C at rs7948643 inhibits PAX8 binding at this enhancer and downstream activation of CCND1 expression. Co-option of a PAX8-dependent physiological programme that supports the proliferation of normal renal epithelial cells is also required for MYC expression from the ccRCC metastasis-associated amplicons at 8q21.3-q24.3 (ref. 8). These results demonstrate that transcriptional lineage factors are essential for oncogenic signalling and that they mediate tissue-specific cancer risk associated with somatic and inherited genetic variants.


Asunto(s)
Carcinogénesis , Neoplasias Renales , Factor de Transcripción PAX8 , Transducción de Señal , Alelos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Carcinogénesis/genética , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/patología , Ciclina D1/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Riñón/metabolismo , Riñón/patología , Neoplasias Renales/metabolismo , Neoplasias Renales/patología , Mutación , Factor de Transcripción PAX8/genética , Factor de Transcripción PAX8/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/genética
3.
Br J Cancer ; 124(1): 3-12, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33144692

RESUMEN

Metastasis remains the leading cause of cancer-associated mortality, and a detailed understanding of the metastatic process could suggest new therapeutic avenues. However, how metastatic phenotypes arise at the genomic level has remained a major open question in cancer biology. Comparative genetic studies of primary and metastatic cancers have revealed a complex picture of metastatic evolution with diverse temporal patterns and trajectories to dissemination. Whole-genome amplification is associated with metastatic cancer clones, but no metastasis-exclusive driver mutations have emerged. Instead, genetically activated oncogenic pathways that drive tumour initiation and early progression acquire metastatic traits by co-opting physiological programmes from stem cell, developmental and regenerative pathways. The functional consequences of oncogenic driver mutations therefore change via epigenetic mechanisms to promote metastasis. Increasing evidence is starting to uncover the molecular mechanisms that determine how specific oncogenic drivers interact with various physiological programmes, and what triggers their activation in support of metastasis. Detailed insight into the mechanisms that control metastasis is likely to reveal novel opportunities for intervention at different stages of metastatic progression.


Asunto(s)
Invasividad Neoplásica/genética , Neoplasias/genética , Neoplasias/patología , Animales , Epigénesis Genética , Humanos , Mutación
4.
Nat Commun ; 10(1): 1152, 2019 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-30858363

RESUMEN

Transcriptional networks are critical for the establishment of tissue-specific cellular states in health and disease, including cancer. Yet, the transcriptional circuits that control carcinogenesis remain poorly understood. Here we report that Kruppel like factor 6 (KLF6), a transcription factor of the zinc finger family, regulates lipid homeostasis in clear cell renal cell carcinoma (ccRCC). We show that KLF6 supports the expression of lipid metabolism genes and promotes the expression of PDGFB, which activates mTOR signalling and the downstream lipid metabolism regulators SREBF1 and SREBF2. KLF6 expression is driven by a robust super enhancer that integrates signals from multiple pathways, including the ccRCC-initiating VHL-HIF2A pathway. These results suggest an underlying mechanism for high mTOR activity in ccRCC cells. More generally, the link between super enhancer-driven transcriptional networks and essential metabolic pathways may provide clues to the mechanisms that maintain the stability of cell identity-defining transcriptional programmes in cancer.


Asunto(s)
Carcinogénesis/genética , Carcinoma de Células Renales/genética , Neoplasias Renales/genética , Factor 6 Similar a Kruppel/metabolismo , Metabolismo de los Lípidos/genética , Animales , Carcinoma de Células Renales/patología , Línea Celular Tumoral , Proliferación Celular/genética , Elementos de Facilitación Genéticos/genética , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Células HEK293 , Humanos , Riñón/patología , Neoplasias Renales/patología , Factor 6 Similar a Kruppel/genética , Masculino , Ratones , Ratones Endogámicos NOD , Ratones Desnudos , Ratones SCID , Proteínas Proto-Oncogénicas c-sis/genética , Transducción de Señal/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Sci Rep ; 8(1): 12063, 2018 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-30104738

RESUMEN

Tissue-specific transcriptional programs control most biological phenotypes, including disease states such as cancer. However, the molecular details underlying transcriptional specificity is largely unknown, hindering the development of therapeutic approaches. Here, we describe novel experimental reporter systems that allow interrogation of the endogenous expression of HIF2A, a critical driver of renal oncogenesis. Using a focused CRISPR-Cas9 library targeting chromatin regulators, we provide evidence that these reporter systems are compatible with high-throughput screening. Our data also suggests redundancy in the control of cancer type-specific transcriptional traits. Reporter systems such as those described here could facilitate large-scale mechanistic dissection of transcriptional programmes underlying cancer phenotypes, thus paving the way for novel therapeutic approaches.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Perfilación de la Expresión Génica/métodos , Genes Reporteros/genética , Pruebas Genéticas/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Sistemas CRISPR-Cas/genética , Carcinogénesis/genética , Carcinoma de Células Renales/genética , Línea Celular Tumoral , Estudios de Factibilidad , Regulación Neoplásica de la Expresión Génica/genética , Técnicas de Sustitución del Gen , Redes Reguladoras de Genes/genética , Células HEK293 , Humanos , Neoplasias Renales/genética , Transcripción Genética
6.
Cancer Discov ; 8(7): 850-865, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29875134

RESUMEN

Metastases, the spread of cancer cells to distant organs, cause the majority of cancer-related deaths. Few metastasis-specific driver mutations have been identified, suggesting aberrant gene regulation as a source of metastatic traits. However, how metastatic gene expression programs arise is poorly understood. Here, using human-derived metastasis models of renal cancer, we identify transcriptional enhancers that promote metastatic carcinoma progression. Specific enhancers and enhancer clusters are activated in metastatic cancer cell populations, and the associated gene expression patterns are predictive of poor patient outcome in clinical samples. We find that the renal cancer metastasis-associated enhancer complement consists of multiple coactivated tissue-specific enhancer modules. Specifically, we identify and functionally characterize a coregulatory enhancer cluster, activated by the renal cancer driver HIF2A and an NF-κB-driven lymphoid element, as a mediator of metastasis in vivo We conclude that oncogenic pathways can acquire metastatic phenotypes through cross-lineage co-option of physiologic epigenetic enhancer states.Significance: Renal cancer is associated with significant mortality due to metastasis. We show that in metastatic renal cancer, functionally important metastasis genes are activated via co-option of gene regulatory enhancer modules from distant developmental lineages, thus providing clues to the origins of metastatic cancer. Cancer Discov; 8(7); 850-65. ©2018 AACR.This article is highlighted in the In This Issue feature, p. 781.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Elementos de Facilitación Genéticos , Neoplasias Renales/metabolismo , FN-kappa B/metabolismo , Animales , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Renales/genética , Neoplasias Renales/patología , Neoplasias Pulmonares/secundario , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID
7.
Mol Oncol ; 11(1): 79-96, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27756687

RESUMEN

Genetic analyses of cancer progression in patient samples and model systems have thus far failed to identify specific mutational drivers of metastasis. Yet, at least in experimental systems, metastatic cancer clones display stable traits that can facilitate progression through the many steps of metastasis. How cancer cells establish and maintain the transcriptional programmes required for metastasis remains mostly unknown. Emerging evidence suggests that metastatic traits may arise from epigenetically altered transcriptional output of the oncogenic signals that drive tumour initiation and early progression. Molecular dissection of such mechanisms remains a central challenge for a comprehensive understanding of the origins of metastasis.

8.
Mol Cancer Res ; 13(11): 1502-8, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26184038

RESUMEN

UNLABELLED: Tumors are surrounded and infiltrated by a variety of stromal cell types, including fibroblasts, immune cells, and vascular endothelial cells, which interact with malignant cells to generate the tumor microenvironment (TME). This complex environment is thought to be regulated by the tumor in order to promote its survival and progression and thus constitutes a potential target for cancer therapy. However, intercellular communication within the microenvironment is not yet well understood. The current study investigates the mechanism by which cancer and immune cells communicate using an in vitro coculture model. It is demonstrated that IL6, a proinflammatory cytokine, secreted by immune cells promotes colorectal cancer cell invasiveness. In addition, in the presence of IL6, the cancer cells were able to secrete circulating miRNAs miR-21 and miR-29b to further induce immune cell IL6 production. Activated immune cells were also found to release miR-21 into the TME. Taken together, these mechanistic findings provide a better understanding of intercellular communication between immune and cancer cells in the TME and offer insight into some of the key players that mediate this cross-talk. IMPLICATIONS: This study demonstrates that cocultured cancer and immune cells communicate via IL6 and circulating miRNAs to sustain chronic inflammation and promote prometastatic cancer cell behavior. In addition, critical players are identified that mediate intercellular communication in the TME and suggest possible therapeutic approaches that target the microenvironment.


Asunto(s)
Comunicación Celular , Neoplasias Colorrectales/metabolismo , Interleucina-6/metabolismo , Leucocitos Mononucleares/metabolismo , MicroARNs/metabolismo , Microambiente Tumoral , Línea Celular , Técnicas de Cocultivo , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/patología , Humanos , Leucocitos Mononucleares/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...