Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
3.
Eur J Hum Genet ; 31(2): 148-163, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36513735

RESUMEN

Primary mitochondrial disease describes a diverse group of neuro-metabolic disorders characterised by impaired oxidative phosphorylation. Diagnosis is challenging; >350 genes, both nuclear and mitochondrial DNA (mtDNA) encoded, are known to cause mitochondrial disease, leading to all possible inheritance patterns and further complicated by heteroplasmy of the multicopy mitochondrial genome. Technological advances, particularly next-generation sequencing, have driven a shift in diagnostic practice from 'biopsy first' to genome-wide analyses of blood and/or urine DNA. This has led to the need for a reference framework for laboratories involved in mitochondrial genetic testing to facilitate a consistent high-quality service. In the United Kingdom, consensus guidelines have been prepared by a working group of Clinical Scientists from the NHS Highly Specialised Service followed by national laboratory consultation. These guidelines summarise current recommended technologies and methodologies for the analysis of mtDNA and nuclear-encoded genes in patients with suspected mitochondrial disease. Genetic testing strategies for diagnosis, family testing and reproductive options including prenatal diagnosis are outlined. Importantly, recommendations for the minimum levels of mtDNA testing for the most common referral reasons are included, as well as guidance on appropriate referrals and information on the minimal appropriate gene content of panels when analysing nuclear mitochondrial genes. Finally, variant interpretation and recommendations for reporting of results are discussed, focussing particularly on the challenges of interpreting and reporting mtDNA variants.


Asunto(s)
Genoma Mitocondrial , Enfermedades Mitocondriales , Embarazo , Femenino , Humanos , Estudio de Asociación del Genoma Completo , Enfermedades Mitocondriales/genética , ADN Mitocondrial/genética , Pruebas Genéticas/métodos , Mitocondrias/genética
4.
Nat Commun ; 13(1): 6324, 2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36344503

RESUMEN

Diagnostic whole genome sequencing (WGS) is increasingly used in rare diseases. However, standard, semi-automated WGS analysis may overlook diagnoses in complex disorders. Here, we show that specialist multidisciplinary analysis of WGS, following an initial 'no primary findings' (NPF) report, improves diagnostic rates and alters management. We undertook WGS in 102 adults with diagnostically challenging primary mitochondrial disease phenotypes. NPF cases were reviewed by a genomic medicine team, thus enabling bespoke informatic approaches, co-ordinated phenotypic validation, and functional work. We enhanced the diagnostic rate from 16.7% to 31.4%, with management implications for all new diagnoses, and detected strong candidate disease-causing variants in a further 3.9% of patients. This approach presents a standardised model of care that supports mainstream clinicians and enhances diagnostic equity for complex disorders, thereby facilitating access to the potential benefits of genomic healthcare. This research was made possible through access to the data and findings generated by the 100,000 Genomes Project: http://www.genomicsengland.co.uk .


Asunto(s)
Genoma , Enfermedades Raras , Humanos , Enfermedades Raras/diagnóstico , Enfermedades Raras/genética , Secuenciación Completa del Genoma , Fenotipo
5.
BMC Med Genomics ; 14(1): 148, 2021 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-34092239

RESUMEN

BACKGROUND: Skeletal dysplasia (SD) conditions are rare genetic diseases of the skeleton, encompassing a heterogeneous group of over 400 disorders, and represent approximately 5% of all congenital anomalies. Developments in genetic and treatment technologies are leading to unparalleled therapeutic advances; thus, it is more important than ever to molecularly confirm SD conditions. Data on 'rates-of-molecular yields' in SD conditions, through exome sequencing approaches, is limited. Figures of 39% and 52.5% have been reported in the USA (n = 54) and South Korea (n = 185) respectively. METHODS: We discuss a single-centre (in the UK) experience of whole-exome sequencing (WES) in a cohort of 15 paediatric patients (aged 5 months to 12 years) with SD disorders previously molecularly unconfirmed. Our cohort included patients with known clinical diagnoses and undiagnosed skeletal syndromes. Extensive phenotyping and expert radiological review by a panel of international SD radiology experts, coupled with a complex bioinformatics pipeline, allowed for both gene-targeted and gene-agnostic approaches. RESULTS: Significant variants leading to a likely or confirmed diagnosis were identified in 53.3% (n = 8/15) of patients; 46.7% (n = 7/15) having a definite molecular diagnosis and 6.7% (n = 1/15) having a likely molecular diagnosis. We discuss this in the context of a rare disease in general and specifically SD presentations. Of patients with known diagnoses pre-WES (n = 10), molecular confirmation occurred in 7/10 cases, as opposed to 1/5 where a diagnosis was unknown pre-test. Thus, diagnostic return is greatest where the diagnosis is known pre-test. For WGS (whole genome sequencing, the next iteration of WES), careful case selection (ideally of known diagnoses pre-test) will yield highest returns. CONCLUSIONS: Our results highlight the cost-effective use of WES-targeted bioinformatic analysis as a diagnostic tool for SD, particularly patients with presumed SD, where detailed phenotyping is essential. Thorough co-ordinated clinical evaluation between clinical, radiological, and molecular teams is essential for improved yield and clinical care. WES (and WGS) yields will increase with time, allowing faster diagnoses, avoiding needless investigations, ensuring individualised patient care and patient reassurance. Further diagnoses will lead to increased information on natural history/mechanistic details, and likely increased therapies and clinical trials.


Asunto(s)
Secuenciación del Exoma
7.
Front Psychiatry ; 5: 84, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25101008

RESUMEN

BACKGROUND: Failure to account for the etiological diversity that typically occurs in psychiatric cohorts may increase the potential for confounding as a proportion of genetic variance will be specific to exposures that have varying distributions in cases. This study investigated whether minimizing the potential for such confounding strengthened the evidence for a genetic candidate currently unsupported at the genome-wide level. METHODS: Two hundred and ninety-one first-episode psychosis cases from South London, UK and 218 unaffected controls were evaluated for a functional polymorphism at the rs1360780 locus in FKBP5. The relationship between FKBP5 and psychosis was modeled using logistic regression. Cannabis use (Cannabis Experiences Questionnaire) and parental separation (Childhood Experience of Care and Abuse Questionnaire) were included as confounders in the analysis. RESULTS: Association at rs1360780 was not detected until the effects of the two environmental factors had been adjusted for in the model (OR = 2.81, 95% CI 1.23-6.43, p = 0.02). A statistical interaction between rs1360780 and parental separation was confirmed by stratified tests (OR = 2.8, p = 0.02 vs. OR = 0.89, p = 0.80). The genetic main effect was directionally consistent with findings in other (stress-related) clinical phenotypes. Moreover, the variation in effect magnitude was explained by the level of power associated with different cannabis constructs used in the model (r = 0.95). CONCLUSION: Our results suggest that the extent to which genetic variants in FKBP5 can influence susceptibility to psychosis may depend on other etiological factors. This finding requires further validation in large independent cohorts. Potentially this work could have translational implications; the ability to discriminate between genetic etiologies based on a case-by-case understanding of previous environmental exposures would confer an important clinical advantage that would benefit the delivery of personalizable treatment strategies.

8.
Neurobiol Aging ; 35(8): 1850-4, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24679604

RESUMEN

Epigenetic processes play a key role in the central nervous system and altered levels of 5-methylcytosine have been associated with a number of neurologic phenotypes, including Alzheimer's disease (AD). Recently, 3 additional cytosine modifications have been identified (5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxylcytosine), which are thought to be intermediate steps in the demethylation of 5-methylcytosine to unmodified cytosine. Little is known about the frequency of these modifications in the human brain during health or disease. In this study, we used immunofluorescence to confirm the presence of each modification in human brain and investigate their cross-tissue abundance in AD patients and elderly control samples. We identify a significant AD-associated decrease in global 5-hydroxymethylcytosine in entorhinal cortex and cerebellum, and differences in 5-formylcytosine levels between brain regions. Our study further implicates a role for epigenetic alterations in AD.


Asunto(s)
Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Citosina/análogos & derivados , Epigénesis Genética/genética , 5-Metilcitosina/análogos & derivados , Anciano , Anciano de 80 o más Años , Citosina/metabolismo , Femenino , Técnica del Anticuerpo Fluorescente , Humanos , Ivermectina/análogos & derivados , Masculino , Metilación
9.
Fam Cancer ; 5(4): 323-6, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16724249

RESUMEN

BRCA1 exon deletions and duplications have been reported in a number of studies, and in order to design an effective mutation screening strategy in a diagnostic setting it is import to determine the frequency of this type of mutation in breast and ovarian cancer patients. We have designed and applied quantitative fluorescent PCR (QF-PCR) assays to screen for BRCA1 exon rearrangements in breast cancer patients both with and without a family history. A panel of 182 familial patients was screened, and an exon 3-7 deletion mutation was detected in a patient with a family history of breast and ovarian cancer. Additionally, we detected a duplication of exons 18-19 in an early onset sporadic breast cancer patient from a panel of 100 patients tested. These data indicate that in the absence of any founder mutations, screening for BRCA1 exon rearrangements does not significantly increase the overall BRCA1 mutation detection rate in patients referred to a genetics clinic because of either a family history and/or an early onset of disease.


Asunto(s)
Neoplasias de la Mama/genética , Exones , Reordenamiento Génico , Genes BRCA1 , Adulto , Femenino , Humanos , Reacción en Cadena de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...