Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Food Energy Secur ; 9(4): e244, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33381300

RESUMEN

Phosphorus (P) is an essential nutrient for crop growth and the second most limiting after N. Current supplies rely on P-rich rocks that are unevenly distributed globally and exploited unsustainably, leading to concerns about future availability and therefore food security. Duckweeds (Lemnaceae) are aquatic macrophytes used in wastewater remediation with the potential for nutrient recycling as feed or fertilizer. The use of duckweeds in this way is confined to tropical regions as it has previously been assumed that growth in the colder seasons of the temperate regions would be insufficient. In this study, the combined effects of cool temperatures and short photoperiods on growth and P uptake and accumulation in Lemna were investigated under controlled laboratory conditions. Growth and P accumulation in Lemna can be uncoupled, with significant P removal from the medium and accumulation within the plants occurring even at 8°C and 6-hr photoperiods. Direct measurement of radiolabeled phosphate uptake confirmed that while transport is strongly temperature dependent, uptake can still be measured at 5°C. Prior phosphate starvation of the duckweed and use of nitrate as the nitrogen (N) source also greatly increased the rate of P removal and in-cell accumulation. These results form the basis for further examination of the feasibility of duckweed-based systems for wastewater treatment and P recapture in temperate climates, particularly in small, rural treatment works.

2.
J Exp Bot ; 66(12): 3523-40, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25944926

RESUMEN

The 'phosphorus problem' has recently received strong interest with two distinct strands of importance. The first is that too much phosphorus (P) is entering into waste water, creating a significant economic and ecological problem. Secondly, while agricultural demand for phosphate fertilizer is increasing to maintain crop yields, rock phosphate reserves are rapidly declining. Unravelling the mechanisms by which plants sense, respond to, and acquire phosphate can address both problems, allowing the development of crop plants that are more efficient at acquiring and using limited amounts of phosphate while at the same time improving the potential of plants and other photosynthetic organisms for nutrient recapture and recycling from waste water. In this review, we attempt to synthesize these important but often disparate parts of the debate in a holistic fashion, since solutions to such a complex problem require integrated and multidisciplinary approaches that address both P supply and demand. Rapid progress has been made recently in our understanding of local and systemic signalling mechanisms for phosphate, and of expression and regulation of membrane proteins that take phosphate up from the environment and transport it within the plant. We discuss the current state of understanding of such mechanisms involved in sensing and responding to phosphate stress. We also discuss approaches to improve the P-use efficiency of crop plants and future direction for sustainable use of P, including use of photosynthetic organisms for recapture of P from waste waters.


Asunto(s)
Conservación de los Recursos Naturales , Fósforo/metabolismo , Plantas/metabolismo , Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA