Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 6259, 2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36307443

RESUMEN

Electromagnetic whistler-mode waves in space plasmas play critical roles in collisionless energy transfer between the electrons and the electromagnetic field. Although resonant interactions have been considered as the likely generation process of the waves, observational identification has been extremely difficult due to the short time scale of resonant electron dynamics. Here we show strong nongyrotropy, which rotate with the wave, of cyclotron resonant electrons as direct evidence for the locally ongoing secular energy transfer from the resonant electrons to the whistler-mode waves using ultra-high temporal resolution data obtained by NASA's Magnetospheric Multiscale (MMS) mission in the magnetosheath. The nongyrotropic electrons carry a resonant current, which is the energy source of the wave as predicted by the nonlinear wave growth theory. This result proves the nonlinear wave growth theory, and furthermore demonstrates that the degree of nongyrotropy, which cannot be predicted even by that nonlinear theory, can be studied by observations.

2.
J Geophys Res Space Phys ; 125(7): e2020JA027778, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32999806

RESUMEN

In this study, the ion composition of flux transfer events (FTEs) observed within the magnetosheath proper is examined. These FTEs were observed just upstream of the Earth's postnoon magnetopause by the National Aeronautics and Space Administration (NASA) Magnetospheric Multiscale (MMS) spacecraft constellation. The minor ion characteristics are described using energy spectrograms, flux distributions, and ion moments as the constellation encountered each FTE. In conjunction with electron data and magnetic field observations, such observations provide important contextual information on the formation, topologies, and evolution of FTEs. In particular, minor ions, when combined with the field-aligned streaming of electrons, are reliable indicators of FTE topology. The observations are also placed (i) in context of the solar wind magnetic field configuration, (ii) the connection of the sampled flux tube to the ionosphere, and (iii) the location relative to the modeled reconnection line at the magnetopause. While protons and alpha particles were often depleted within the FTEs relative to the surrounding magnetosheath plasma, the He+ and O+ populations showed clear enhancements either near the center or near the edges of the FTE, and the bulk plasma flow directions are consistent with magnetic reconnection northward of the spacecraft and convection from the dayside toward the flank magnetopause.

3.
J Geophys Res Space Phys ; 125(4): e2019JA027665, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32714734

RESUMEN

On 5 May 2017, MMS observed a crater-type flux rope on the dawnside tailward magnetopause with fluctuations. The boundary-normal analysis shows that the fluctuations can be attributed to nonlinear Kelvin-Helmholtz (KH) waves. Reconnection signatures such as flow reversals and Joule dissipation were identified at the leading and trailing edges of the flux rope. In particular, strong northward electron jets observed at the trailing edge indicated midlatitude reconnection associated with the 3-D structure of the KH vortex. The scale size of the flux rope, together with reconnection signatures, strongly supports the interpretation that the flux rope was generated locally by KH vortex-induced reconnection. The center of the flux rope also displayed signatures of guide-field reconnection (out-of-plane electron jets, parallel electron heating, and Joule dissipation). These signatures indicate that an interface between two interlinked flux tubes was undergoing interaction, causing a local magnetic depression, resulting in an M-shaped crater flux rope, as supported by reconstruction.

4.
Phys Rev Lett ; 124(6): 065101, 2020 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-32109113

RESUMEN

The first-order Fermi acceleration of electrons requires an injection of electrons into a mildly relativistic energy range. However, the mechanism of injection has remained a puzzle both in theory and observation. We present direct evidence for a novel stochastic shock drift acceleration theory for the injection obtained with Magnetospheric Multiscale observations at the Earth's bow shock. The theoretical model can explain electron acceleration to mildly relativistic energies at high-speed astrophysical shocks, which may provide a solution to the long-standing issue of electron injection.

5.
Geophys Res Lett ; 46(12): 6287-6296, 2019 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-31598018

RESUMEN

While vorticity defined as the curl of the velocity has been broadly used in fluid and plasma physics, this quantity has been underutilized in space physics due to low time resolution observations. We report Magnetospheric Multiscale (MMS) observations of enhanced electron vorticity in the vicinity of the electron diffusion region of magnetic reconnection. On 11 July 2017 MMS traversed the magnetotail current sheet, observing tailward-to-earthward outflow reversal, current-carrying electron jets in the direction along the electron meandering motion or out-of-plane direction, agyrotropic electron distribution functions, and dissipative signatures. At the edge of the electron jets, the electron vorticity increased with magnitudes greater than the electron gyrofrequency. The out-of-plane velocity shear along distance from the current sheet leads to the enhanced vorticity. This, in turn, contributes to the magnetic field perturbations observed by MMS. These observations indicate that electron vorticity can act as a proxy for delineating the electron diffusion region of magnetic reconnection.

6.
Science ; 362(6421): 1391-1395, 2018 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-30442767

RESUMEN

Magnetic reconnection is an energy conversion process that occurs in many astrophysical contexts including Earth's magnetosphere, where the process can be investigated in situ by spacecraft. On 11 July 2017, the four Magnetospheric Multiscale spacecraft encountered a reconnection site in Earth's magnetotail, where reconnection involves symmetric inflow conditions. The electron-scale plasma measurements revealed (i) super-Alfvénic electron jets reaching 15,000 kilometers per second; (ii) electron meandering motion and acceleration by the electric field, producing multiple crescent-shaped structures in the velocity distributions; and (iii) the spatial dimensions of the electron diffusion region with an aspect ratio of 0.1 to 0.2, consistent with fast reconnection. The well-structured multiple layers of electron populations indicate that the dominant electron dynamics are mostly laminar, despite the presence of turbulence near the reconnection site.

7.
Science ; 361(6406): 1000-1003, 2018 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-30190400

RESUMEN

Particle acceleration by plasma waves and spontaneous wave generation are fundamental energy and momentum exchange processes in collisionless plasmas. Such wave-particle interactions occur ubiquitously in space. We present ultrafast measurements in Earth's magnetosphere by the Magnetospheric Multiscale spacecraft that enabled quantitative evaluation of energy transfer in interactions associated with electromagnetic ion cyclotron waves. The observed ion distributions are not symmetric around the magnetic field direction but are in phase with the plasma wave fields. The wave-ion phase relations demonstrate that a cyclotron resonance transferred energy from hot protons to waves, which in turn nonresonantly accelerated cold He+ to energies up to ~2 kilo-electron volts. These observations provide direct quantitative evidence for collisionless energy transfer in plasmas between distinct particle populations via wave-particle interactions.

8.
Phys Rev Lett ; 120(7): 075101, 2018 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-29542938

RESUMEN

Secondary flux ropes are suggested to play important roles in energy dissipation and particle acceleration during magnetic reconnection. However, their generation mechanism is not fully understood. In this Letter, we present the first direct evidence that a secondary flux rope was generated due to the evolution of an electron vortex, which was driven by the electron Kelvin-Helmholtz instability in an ion diffusion region as observed by the Magnetospheric Multiscale mission. The subion scale (less than the ion inertial length) flux rope was embedded within the electron vortex, which contained a secondary electron diffusion region at the trailing edge of the flux rope. We propose that intense electron shear flow produced by reconnection generated the electron Kelvin-Helmholtz vortex, which induced a secondary reconnection in the exhaust of the primary X line and then led to the formation of the flux rope. This result strongly suggests that secondary electron Kelvin-Helmholtz instability is important for reconnection dynamics.

9.
Geophys Res Lett ; 45(2): 578-584, 2018 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-29576666

RESUMEN

We report Magnetospheric Multiscale observations of electron pressure gradient electric fields near a magnetic reconnection diffusion region using a new technique for extracting 7.5 ms electron moments from the Fast Plasma Investigation. We find that the deviation of the perpendicular electron bulk velocity from E × B drift in the interval where the out-of-plane current density is increasing can be explained by the diamagnetic drift. In the interval where the out-of-plane current is transitioning to in-plane current, the electron momentum equation is not satisfied at 7.5 ms resolution.

10.
Phys Rev Lett ; 119(5): 055101, 2017 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-28949734

RESUMEN

We report unambiguous in situ observation of the coalescence of macroscopic flux ropes by the magnetospheric multiscale (MMS) mission. Two coalescing flux ropes with sizes of ∼1 R_{E} were identified at the subsolar magnetopause by the occurrence of an asymmetric quadrupolar signature in the normal component of the magnetic field measured by the MMS spacecraft. An electron diffusion region (EDR) with a width of four local electron inertial lengths was embedded within the merging current sheet. The EDR was characterized by an intense parallel electric field, significant energy dissipation, and suprathermal electrons. Although the electrons were organized by a large guide field, the small observed electron pressure nongyrotropy may be sufficient to support a significant fraction of the parallel electric field within the EDR. Since the flux ropes are observed in the exhaust region, we suggest that secondary EDRs are formed further downstream of the primary reconnection line between the magnetosheath and magnetospheric fields.

11.
Phys Rev Lett ; 119(2): 025101, 2017 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-28753352

RESUMEN

During a magnetopause crossing the Magnetospheric Multiscale spacecraft encountered an electron diffusion region (EDR) of asymmetric reconnection. The EDR is characterized by agyrotropic beam and crescent electron distributions perpendicular to the magnetic field. Intense upper-hybrid (UH) waves are found at the boundary between the EDR and magnetosheath inflow region. The UH waves are generated by the agyrotropic electron beams. The UH waves are sufficiently large to contribute to electron diffusion and scattering, and are a potential source of radio emission near the EDR. These results provide observational evidence of wave-particle interactions at an EDR, and suggest that waves play an important role in determining the electron dynamics.

12.
Science ; 356(6341): 960-963, 2017 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-28572393

RESUMEN

The magnetopause deflects the solar wind plasma and confines Earth's magnetic field. We combine measurements made by the four spacecraft of the Magnetospheric Multiscale mission to demonstrate how the plasma and magnetic forces at the boundary affect the interaction between the shocked solar wind and Earth's magnetosphere. We compare these forces with the plasma pressure and examine the electron distribution function. We find that the magnetopause has sublayers with thickness comparable to the ion scale. Small pockets of low magnetic field strength, small radius of curvature, and high electric current mark the electron diffusion region. The flow of electrons, parallel and antiparallel to the magnetic field, reveals a complex topology with the creation of magnetic ropes at the boundary.

13.
Phys Rev Lett ; 117(16): 165101, 2016 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-27792387

RESUMEN

Collisionless shock nonstationarity arising from microscale physics influences shock structure and particle acceleration mechanisms. Nonstationarity has been difficult to quantify due to the small spatial and temporal scales. We use the closely spaced (subgyroscale), high-time-resolution measurements from one rapid crossing of Earth's quasiperpendicular bow shock by the Magnetospheric Multiscale (MMS) spacecraft to compare competing nonstationarity processes. Using MMS's high-cadence kinetic plasma measurements, we show that the shock exhibits nonstationarity in the form of ripples.

14.
Science ; 274(5286): 394-5, 1996 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-8832882

RESUMEN

Plasma measurements made during the flyby of Io on 7 December 1995 with the Galileo spacecraft plasma analyzers reveal that the spacecraft unexpectedly passed directly through the ionosphere of Io. The ionosphere is identified by a dense plasma that is at rest with respect to Io. This plasma is cool relative to those encountered outside the ionosphere. The composition of the ionospheric plasmas includes O++, O+ and S++, S+, and SO2+ ions. The plasma conditions at Io appear to account for the decrease in the magnetic field, without the need to assume that Io has a magnetized interior.


Asunto(s)
Iones , Júpiter , Medio Ambiente Extraterrestre , Magnetismo , Oxígeno/análisis , Azufre/análisis , Dióxido de Azufre/análisis
15.
Science ; 253(5027): 1528-31, 1991 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-17784095

RESUMEN

Plasma measurements were obtained with the Galileo spacecraft during an approximately 3.5-hour interval in the vicinity of Venus on 10 February 1990. Several crossings of the bow shock in the local dawn sector were recorded before the spacecraft passed into the solar wind upstream from this planet. Although observations of ions of the solar wind and the postshock magnetosheath plasmas were not possible owing to the presence of a sunshade for thermal protection of the instrument, solar wind densities and bulk speeds were determined from the electron velocity distributions. A magnetic field-aligned distribution of hotter electrons or ;;strahl'' was also found in the solar wind. Ions streaming into the solar wind from the bow shock were detected. Electron heating at the bow shock,

16.
Anal Biochem ; 173(2): 353-8, 1988 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-3189814

RESUMEN

A technique for determining the amount of thermally denatured, insoluble protein is described. The assay has been validated using four globular proteins, bovine serum albumin, beta-lactoglobulin, lysozyme, and ovalbumin. It consists of a resolubilization protocol, using 8 M urea and 5% 2-mercaptoethanol, linked to the Bradford dye binding assay. The resolubilization protocol was carried out at 100 degrees C to enable complete recovery of all insoluble proteins. Beta-Lactoglobulin resolubilization was completed after heating for 1 min, whereas samples of bovine serum albumin, lysozyme, and ovalbumin required heating for 1.5 min. The assay can measure protein concentrations as small as 10 micrograms, typically with standard deviations of 3%, thus comparing favorably with the standard Bradford assay. Other types of denaturation, such as chemical denaturation causing subsequent insolubility, may be studied with this technique providing that there is no interference with the Bradford assay.


Asunto(s)
Proteínas/análisis , Calor , Lactoglobulinas/análisis , Muramidasa/análisis , Ovalbúmina/análisis , Reproducibilidad de los Resultados , Albúmina Sérica Bovina/análisis , Solubilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...