Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
EBioMedicine ; 102: 105048, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38484556

RESUMEN

BACKGROUND: Tobacco is the main risk factor for developing lung cancer. Yet, while some heavy smokers develop lung cancer at a young age, other heavy smokers never develop it, even at an advanced age, suggesting a remarkable variability in the individual susceptibility to the carcinogenic effects of tobacco. We characterized the germline profile of subjects presenting these extreme phenotypes with Whole Exome Sequencing (WES) and Machine Learning (ML). METHODS: We sequenced germline DNA from heavy smokers who either developed lung adenocarcinoma at an early age (extreme cases) or who did not develop lung cancer at an advanced age (extreme controls), selected from databases including over 6600 subjects. We selected individual coding genetic variants and variant-rich genes showing a significantly different distribution between extreme cases and controls. We validated the results from our discovery cohort, in which we analysed by WES extreme cases and controls presenting similar phenotypes. We developed ML models using both cohorts. FINDINGS: Mean age for extreme cases and controls was 50.7 and 79.1 years respectively, and mean tobacco consumption was 34.6 and 62.3 pack-years. We validated 16 individual variants and 33 variant-rich genes. The gene harbouring the most validated variants was HLA-A in extreme controls (4 variants in the discovery cohort, p = 3.46E-07; and 4 in the validation cohort, p = 1.67E-06). We trained ML models using as input the 16 individual variants in the discovery cohort and tested them on the validation cohort, obtaining an accuracy of 76.5% and an AUC-ROC of 83.6%. Functions of validated genes included candidate oncogenes, tumour-suppressors, DNA repair, HLA-mediated antigen presentation and regulation of proliferation, apoptosis, inflammation and immune response. INTERPRETATION: Individuals presenting extreme phenotypes of high and low risk of developing tobacco-associated lung adenocarcinoma show different germline profiles. Our strategy may allow the identification of high-risk subjects and the development of new therapeutic approaches. FUNDING: See a detailed list of funding bodies in the Acknowledgements section at the end of the manuscript.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Persona de Mediana Edad , Anciano , Secuenciación del Exoma , Predisposición Genética a la Enfermedad , Adenocarcinoma del Pulmón/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Fenotipo , Células Germinativas/patología
2.
Neuro Oncol ; 2024 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-38554031

RESUMEN

BACKGROUND: Pediatric high-grade gliomas (pHGGs), including diffuse midline gliomas (DMGs), are aggressive pediatric tumors with one of the poorest prognoses. Delta-24-RGD and ONC201 have shown promising efficacy as single agents for these tumors. However, the combination of both agents has not been evaluated. METHODS: The production of functional viruses was assessed by immunoblotting and replication assays. The antitumor effect was evaluated in a panel of human and murine pHGG and DMG cell lines. RNAseq, the seahorse stress test, mitochondrial DNA content, and γH2A.X immunofluorescence were used to perform mechanistic studies. Mouse models of both diseases were used to assess the efficacy of the combination in vivo. The tumor immune microenvironment was evaluated using flow cytometry, RNAseq and multiplexed immunofluorescence staining. RESULTS: The Delta-24-RGD/ONC201 combination did not affect the virus replication capability in human pHGG and DMG models in vitro. Cytotoxicity analysis showed that the combination treatment was either synergistic or additive. Mechanistically, the combination treatment increased nuclear DNA damage and maintained the metabolic perturbation and mitochondrial damage caused by each agent alone. Delta-24-RGD/ONC201 cotreatment extended the overall survival of mice implanted with human and murine pHGG and DMG cells, independent of H3 mutation status and location. Finally, combination treatment in murine DMG models revealed a reshaping of the tumor microenvironment to a proinflammatory phenotype. CONCLUSIONS: The Delta-24-RGD/ONC201 combination improved the efficacy compared to each agent alone in in vitro and in vivo models by potentiating nuclear DNA damage and in turn improving the antitumor (immune) response to each agent alone.

4.
Cancer Cell ; 41(11): 1911-1926.e8, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37802053

RESUMEN

Diffuse intrinsic pontine glioma (DIPG) is an aggressive brain stem tumor and the leading cause of pediatric cancer-related death. To date, these tumors remain incurable, underscoring the need for efficacious therapies. In this study, we demonstrate that the immune checkpoint TIM-3 (HAVCR2) is highly expressed in both tumor cells and microenvironmental cells, mainly microglia and macrophages, in DIPG. We show that inhibition of TIM-3 in syngeneic models of DIPG prolongs survival and produces long-term survivors free of disease that harbor immune memory. This antitumor effect is driven by the direct effect of TIM-3 inhibition in tumor cells, the coordinated action of several immune cell populations, and the secretion of chemokines/cytokines that create a proinflammatory tumor microenvironment favoring a potent antitumor immune response. This work uncovers TIM-3 as a bona fide target in DIPG and supports its clinical translation.


Asunto(s)
Neoplasias del Tronco Encefálico , Glioma Pontino Intrínseco Difuso , Glioma , Humanos , Niño , Glioma/patología , Memoria Inmunológica , Receptor 2 Celular del Virus de la Hepatitis A , Neoplasias del Tronco Encefálico/tratamiento farmacológico , Neoplasias del Tronco Encefálico/patología , Microambiente Tumoral
5.
Curr Opin Oncol ; 35(6): 529-535, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37820087

RESUMEN

PURPOSE OF REVIEW: The purpose of this review is to give an overview of early clinical studies addressing the safety and efficacy of oncolytic immunovirotherapy in adults and children with brain gliomas, and to highlight the extensive potential for the development of this therapeutic alternative. RECENT FINDINGS: The lack of curative treatments and poor prognosis of high-grade glioma patients warrants research on innovative therapeutic alternatives such as oncolytic immunovirotherapy. Engineered modified oncolytic viruses exert both a direct lytic effect on tumor cells and a specific antitumor immune response. Early clinical trials of different DNA and RNA oncolytic viruses, mainly Herpes Simplex Virus Type-1 and adenovirus based platforms, have consistently demonstrated an acceptable safety profile, hints of efficacy and the potential of this therapy to reshape the tumor microenvironment in both adult and pediatric patients with glioma, thus constituting the basis for the development of more advanced clinical trials. SUMMARY: The future landscape of oncolytic immunovirotherapy is still plenty of challenges and opportunities to enable its full therapeutic potential in both adult and children with brain gliomas.


Asunto(s)
Neoplasias Encefálicas , Glioma , Herpesvirus Humano 1 , Viroterapia Oncolítica , Virus Oncolíticos , Adulto , Humanos , Niño , Glioma/terapia , Virus Oncolíticos/genética , Herpesvirus Humano 1/genética , Encéfalo , Neoplasias Encefálicas/terapia , Microambiente Tumoral
6.
Cancer Epidemiol ; : 102432, 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37596165

RESUMEN

INTRODUCTION: Several studies have linked increased risk of osteosarcoma with tall stature, high birthweight, and early puberty, although evidence is inconsistent. We used genetic risk scores (GRS) based on established genetic loci for these traits and evaluated associations between genetically inferred birthweight, height, and puberty timing with osteosarcoma. METHODS: Using genotype data from two genome-wide association studies, totaling 1039 cases and 2923 controls of European ancestry, association analyses were conducted using logistic regression for each study and meta-analyzed to estimate pooled odds ratios (ORs) and 95% confidence intervals (CIs). Subgroup analyses were conducted by case diagnosis age, metastasis status, tumor location, tumor histology, and presence of a known pathogenic variant in a cancer susceptibility gene. RESULTS: Genetically inferred higher birthweight was associated with an increased risk of osteosarcoma (OR =1.59, 95% CI 1.07-2.38, P = 0.02). This association was strongest in cases without metastatic disease (OR =2.46, 95% CI 1.44-4.19, P = 9.5 ×10-04). Although there was no overall association between osteosarcoma and genetically inferred taller stature (OR=1.06, 95% CI 0.96-1.17, P = 0.28), the GRS for taller stature was associated with an increased risk of osteosarcoma in 154 cases with a known pathogenic cancer susceptibility gene variant (OR=1.29, 95% CI 1.03-1.63, P = 0.03). There were no significant associations between the GRS for puberty timing and osteosarcoma. CONCLUSION: A genetic propensity to higher birthweight was associated with increased osteosarcoma risk, suggesting that shared genetic factors or biological pathways that affect birthweight may contribute to osteosarcoma pathogenesis.

7.
Cells ; 12(15)2023 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-37566035

RESUMEN

Cardiotoxicity due to anthracyclines (CDA) affects cancer patients, but we cannot predict who may suffer from this complication. CDA is a complex trait with a polygenic component that is mainly unidentified. We propose that levels of intermediate molecular phenotypes (IMPs) in the myocardium associated with histopathological damage could explain CDA susceptibility, so variants of genes encoding these IMPs could identify patients susceptible to this complication. Thus, a genetically heterogeneous cohort of mice (n = 165) generated by backcrossing were treated with doxorubicin and docetaxel. We quantified heart fibrosis using an Ariol slide scanner and intramyocardial levels of IMPs using multiplex bead arrays and QPCR. We identified quantitative trait loci linked to IMPs (ipQTLs) and cdaQTLs via linkage analysis. In three cancer patient cohorts, CDA was quantified using echocardiography or Cardiac Magnetic Resonance. CDA behaves as a complex trait in the mouse cohort. IMP levels in the myocardium were associated with CDA. ipQTLs integrated into genetic models with cdaQTLs account for more CDA phenotypic variation than that explained by cda-QTLs alone. Allelic forms of genes encoding IMPs associated with CDA in mice, including AKT1, MAPK14, MAPK8, STAT3, CAS3, and TP53, are genetic determinants of CDA in patients. Two genetic risk scores for pediatric patients (n = 71) and women with breast cancer (n = 420) were generated using machine-learning Least Absolute Shrinkage and Selection Operator (LASSO) regression. Thus, IMPs associated with heart damage identify genetic markers of CDA risk, thereby allowing more personalized patient management.


Asunto(s)
Cardiotoxicidad , Neoplasias , Femenino , Animales , Ratones , Cardiotoxicidad/etiología , Antraciclinas/efectos adversos , Marcadores Genéticos , Antibióticos Antineoplásicos/uso terapéutico , Neoplasias/tratamiento farmacológico , Fenotipo
8.
Sci Rep ; 13(1): 2959, 2023 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-36805510

RESUMEN

Genetic predisposition is an important risk factor for cancer in children and adolescents but detailed associations of individual genetic mutations to childhood cancer are still under intense investigation. Among pediatric cancers, sarcomas can arise in the setting of cancer predisposition syndromes. The association of sarcomas with these syndromes is often missed, due to the rarity and heterogeneity of sarcomas and the limited search of cancer genetic syndromes. This study included 43 pediatric and young adult patients with different sarcoma subtypes. Tumor profiling was undertaken using the Oncomine Childhood Cancer Research Assay (Thermo Fisher Scientific). Sequencing results were reviewed for potential germline alterations in clinically relevant genes associated with cancer predisposition syndromes. Jongmans´ criteria were taken into consideration for the patient selection. Fifteen patients were selected as having potential pathogenic germline variants due to tumor sequencing that identified variants in the following genes: CDKN2A, NF1, NF2, RB1, SMARCA4, SMARCB1 and TP53. The variants found in NF1 and CDKN2A in two different patients were detected in the germline, confirming the diagnosis of a cancer predisposition syndrome. We have shown that the results of somatic testing can be used to identify those at risk of an underlying cancer predisposition syndrome.


Asunto(s)
Sarcoma , Neoplasias de los Tejidos Blandos , Adolescente , Adulto Joven , Humanos , Niño , Síndrome , Sarcoma/diagnóstico , Sarcoma/genética , Genotipo , Genes p16 , Predisposición Genética a la Enfermedad , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina , ADN Helicasas , Proteínas Nucleares , Factores de Transcripción
9.
bioRxiv ; 2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36712139

RESUMEN

Cardiotoxicity due to anthracyclines (CDA) affects cancer patients, but we cannot predict who may suffer from this complication. CDA is a complex disease whose polygenic component is mainly unidentified. We propose that levels of intermediate molecular phenotypes in the myocardium associated with histopathological damage could explain CDA susceptibility; so that variants of genes encoding these intermediate molecular phenotypes could identify patients susceptible to this complication. A genetically heterogeneous cohort of mice generated by backcrossing (N = 165) was treated with doxorubicin and docetaxel. Cardiac histopathological damage was measured by fibrosis and cardiomyocyte size by an Ariol slide scanner. We determine intramyocardial levels of intermediate molecular phenotypes of CDA associated with histopathological damage and quantitative trait loci (ipQTLs) linked to them. These ipQTLs seem to contribute to the missing heritability of CDA because they improve the heritability explained by QTL directly linked to CDA (cda-QTLs) through genetic models. Genes encoding these molecular subphenotypes were evaluated as genetic markers of CDA in three cancer patient cohorts (N = 517) whose cardiac damage was quantified by echocardiography or Cardiac Magnetic Resonance. Many SNPs associated with CDA were found using genetic models. LASSO multivariate regression identified two risk score models, one for pediatric cancer patients and the other for women with breast cancer. Molecular intermediate phenotypes associated with heart damage can identify genetic markers of CDA risk, thereby allowing a more personalized patient management. A similar strategy could be applied to identify genetic markers of other complex trait diseases.

11.
Front Pharmacol ; 13: 1042989, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36438828

RESUMEN

Background: Despite (neo) adjuvant chemotherapy with cisplatin, doxorubicin and methotrexate, some patients with primary osteosarcoma progress during first-line systemic treatment and have a poor prognosis. In this study, we investigated whether patients with early disease progression (EDP), are characterized by a distinctive pharmacogenetic profile. Methods and Findings: Germline DNA from 287 Dutch high-grade osteosarcoma patients was genotyped using the DMET Plus array (containing 1,936 genetic markers in 231 drug metabolism and transporter genes). Associations between genetic variants and EDP were assessed using logistic regression models and associated variants (p <0.05) were validated in independent cohorts of 146 (Spain and United Kingdom) and 28 patients (Australia). In the association analyses, EDP was significantly associated with an SLC7A8 locus and was independently validated (meta-analysis validation cohorts: OR 0.19 [0.06-0.55], p = 0.002). The functional relevance of the top hits was explored by immunohistochemistry staining and an in vitro transport models. SLC7A8 encodes for the L-type amino acid transporter 2 (LAT2). Transport assays in HEK293 cells overexpressing LAT2 showed that doxorubicin, but not cisplatin and methotrexate, is a substrate for LAT2 (p < 0.0001). Finally, SLC7A8 mRNA expression analysis and LAT2 immunohistochemistry of osteosarcoma tissue showed that the lack of LAT2 expression is a prognostic factor of poor prognosis and reduced overall survival in patients without metastases (p = 0.0099 and p = 0.14, resp.). Conclusion: This study identified a novel locus in SLC7A8 to be associated with EDP in osteosarcoma. Functional studies indicate LAT2-mediates uptake of doxorubicin, which could give new opportunities to personalize treatment of osteosarcoma patients.

12.
Mol Ther Oncolytics ; 26: 246-264, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-35949950

RESUMEN

The outcomes of metastatic and nonresponder pediatric osteosarcoma patients are very poor and have not improved in the last 30 years. These tumors harbor a highly immunosuppressive environment, making existing immunotherapies ineffective. Here, we evaluated the use of Semliki Forest virus (SFV) vectors expressing galectin-3 (Gal3) inhibitors as therapeutic tools, since both the inhibition of Gal3, which is involved in immunosuppression and metastasis, and virotherapy based on SFV have been demonstrated to reduce tumor progression in different tumor models. In vitro, inhibitors based on the Gal3 amino-terminal domain alone (Gal3-N) or fused to a Gal3 peptide inhibitor (Gal3-N-C12) were able to block the binding of Gal3 to the surface of activated T cells. In vivo, SFV expressing Gal3-N-C12 induced strong antitumor responses in orthotopic K7M2 and MOS-J osteosarcoma tumors, leading to complete regressions in 47% and 30% of mice, respectively. Pulmonary metastases were also reduced in K7M2 tumor-bearing mice after treatment with SFV-Gal3-N-C12. Both the antitumor and antimetastatic responses were dependent on modulation of the immune system, primarily including an increase in tumor-infiltrating lymphocytes and a reduction in the immunosuppressive environment inside tumors. Our results demonstrated that SFV-Gal3-N-C12 could constitute a potential therapeutic agent for osteosarcoma patients expressing Gal3.

13.
Front Pediatr ; 10: 875510, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35844738

RESUMEN

We report the case of a 7-month-old female patient who developed acute megakaryoblastic leukemia 6 months after the appearance of skull bone lesions. Initial evaluation and diagnosis of this patient were challenging and only achieved thanks to genomic analysis by NGS (next generation sequencing). It is unusual for the initial manifestation of acute megakaryoblastic leukemia to be a skull bone lesion. Extramedullary acute myeloid leukemia (eAML), also known as myeloid sarcoma (MS), often occurs simultaneously with acute myeloid leukemia (AML), although it may precede AML. Genomic analysis based on a NGS panel (Oncomine Childhood Cancer Research Assay) detected a RBM15::MKL1 fusion, a consequence of a t (1;22)(p13;q13) translocation, establishing the diagnosis of acute megakaryoblastic leukemia and enabling disease follow-up by qPCR. A diagnosis of eAML is built up from various findings in radiological, histological, immunophenotypic and genomic studies; when the tumor appears de novo, diagnosis is more complicated. We emphasize the importance of a multidisciplinary team in the initial approach to rare tumors and the use of genomic studies to contribute to the knowledge of these neoplasms, risk stratification and treatment planning.

14.
N Engl J Med ; 386(26): 2471-2481, 2022 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-35767439

RESUMEN

BACKGROUND: Pediatric patients with diffuse intrinsic pontine glioma (DIPG) have a poor prognosis, with a median survival of less than 1 year. Oncolytic viral therapy has been evaluated in patients with pediatric gliomas elsewhere in the brain, but data regarding oncolytic viral therapy in patients with DIPG are lacking. METHODS: We conducted a single-center, dose-escalation study of DNX-2401, an oncolytic adenovirus that selectively replicates in tumor cells, in patients with newly diagnosed DIPG. The patients received a single virus infusion through a catheter placed in the cerebellar peduncle, followed by radiotherapy. The primary objective was to assess the safety and adverse-event profile of DNX-2401. The secondary objectives were to evaluate the effect of DNX-2401 on overall survival and quality of life, to determine the percentage of patients who have an objective response, and to collect tumor-biopsy and peripheral-blood samples for correlative studies of the molecular features of DIPG and antitumor immune responses. RESULTS: A total of 12 patients, 3 to 18 years of age, with newly diagnosed DIPG received 1×1010 (the first 4 patients) or 5×1010 (the subsequent 8 patients) viral particles of DNX-2401, and 11 received subsequent radiotherapy. Adverse events among the patients included headache, nausea, vomiting, and fatigue. Hemiparesis and tetraparesis developed in 1 patient each. Over a median follow-up of 17.8 months (range, 5.9 to 33.5), a reduction in tumor size, as assessed on magnetic resonance imaging, was reported in 9 patients, a partial response in 3 patients, and stable disease in 8 patients. The median survival was 17.8 months. Two patients were alive at the time of preparation of the current report, 1 of whom was free of tumor progression at 38 months. Examination of a tumor sample obtained during autopsy from 1 patient and peripheral-blood studies revealed alteration of the tumor microenvironment and T-cell repertoire. CONCLUSIONS: Intratumoral infusion of oncolytic virus DNX-2401 followed by radiotherapy in pediatric patients with DIPG resulted in changes in T-cell activity and a reduction in or stabilization of tumor size in some patients but was associated with adverse events. (Funded by the European Research Council under the European Union's Horizon 2020 Research and Innovation Program and others; EudraCT number, 2016-001577-33; ClinicalTrials.gov number, NCT03178032.).


Asunto(s)
Neoplasias del Tronco Encefálico , Glioma Pontino Intrínseco Difuso , Viroterapia Oncolítica , Virus Oncolíticos , Adenoviridae , Adolescente , Astrocitoma/radioterapia , Astrocitoma/terapia , Neoplasias del Tronco Encefálico/mortalidad , Neoplasias del Tronco Encefálico/patología , Neoplasias del Tronco Encefálico/radioterapia , Neoplasias del Tronco Encefálico/terapia , Niño , Preescolar , Glioma Pontino Intrínseco Difuso/mortalidad , Glioma Pontino Intrínseco Difuso/radioterapia , Glioma Pontino Intrínseco Difuso/terapia , Glioma/radioterapia , Glioma/terapia , Humanos , Infusiones Intralesiones , Viroterapia Oncolítica/efectos adversos , Viroterapia Oncolítica/métodos , Calidad de Vida , Microambiente Tumoral
15.
JCI Insight ; 7(7)2022 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-35393952

RESUMEN

Diffuse intrinsic pontine gliomas (DIPGs) are aggressive pediatric brain tumors, and patient survival has not changed despite many therapeutic efforts, emphasizing the urgent need for effective treatments. Here, we evaluated the anti-DIPG effect of the oncolytic adenovirus Delta-24-ACT, which was engineered to express the costimulatory ligand 4-1BBL to potentiate the antitumor immune response of the virus. Delta-24-ACT induced the expression of functional 4-1BBL on the membranes of infected DIPG cells, which enhanced the costimulation of CD8+ T lymphocytes. In vivo, Delta-24-ACT treatment of murine DIPG orthotopic tumors significantly improved the survival of treated mice, leading to long-term survivors that developed immunological memory against these tumors. In addition, Delta-24-ACT was safe and caused no local or systemic toxicity. Mechanistic studies showed that Delta-24-ACT modulated the tumor-immune content, not only increasing the number, but also improving the functionality of immune cells. All of these data highlight the safety and potential therapeutic benefit of Delta-24-ACT the treatment of patients with DIPG.


Asunto(s)
Neoplasias del Tronco Encefálico , Glioma Pontino Intrínseco Difuso , Viroterapia Oncolítica , Adenoviridae , Animales , Neoplasias del Tronco Encefálico/genética , Neoplasias del Tronco Encefálico/patología , Neoplasias del Tronco Encefálico/terapia , Humanos , Ratones
16.
Cancers (Basel) ; 14(5)2022 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-35267543

RESUMEN

Epithelial ovarian cancer (EOC) is still the most lethal gynecological cancer. Germline alterations in breast cancer 1 (gBRCA1) and breast cancer 2 (gBRCA2) genes have been identified in up to 18% of women diagnosed with EOC, and somatic mutations are found in an additional 7%. Testing of BRCA at the primary diagnosis of patients with EOC is recommended due to the implications in the genomic counseling of the patients and their families, as well as for the therapeutic implications. Indeed, the introduction of poly-(ADP ribose) polymerase inhibitors (PARPis) has changed the natural history of patients harboring a mutation in BRCA, and has resulted in a new era in the treatment of patients with ovarian cancer harboring a BRCA mutation.

17.
Mol Cancer Ther ; 21(3): 471-480, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34965961

RESUMEN

Osteosarcoma is an aggressive bone tumor occurring primarily in pediatric patients. Despite years of intensive research, the outcomes of patients with metastatic disease or those who do not respond to therapy have remained poor and have not changed in the last 30 years. Oncolytic virotherapy is becoming a reality to treat local and metastatic tumors while maintaining a favorable safety profile. Delta-24-ACT is a replicative oncolytic adenovirus engineered to selectively target cancer cells and to potentiate immune responses through expression of the immune costimulatory ligand 4-1BB. This work aimed to assess the antisarcoma effect of Delta-24-ACT. MTS and replication assays were used to quantify the antitumor effects of Delta-24-ACT in vitro in osteosarcoma human and murine cell lines. Evaluation of the in vivo antitumor effect and immune response to Delta-24-ACT was performed in immunocompetent mice bearing the orthotopic K7M2 cell line. Immunophenotyping of the tumor microenvironment was characterized by immunohistochemistry and flow cytometry. In vitro, Delta-24-ACT killed osteosarcoma cells and triggered the production of danger signals. In vivo, local treatment with Delta-24-ACT led to antitumor effects against both the primary tumor and spontaneous metastases in a murine osteosarcoma model. Viral treatment was safe, with no noted toxicity. Delta-24-ACT significantly increased the median survival time of treated mice. Collectively, our data identify Delta-24-ACT administration as an effective and safe therapeutic strategy for patients with local and metastatic osteosarcoma. These results support clinical translation of this viral immunotherapy approach.


Asunto(s)
Neoplasias Óseas , Viroterapia Oncolítica , Virus Oncolíticos , Osteosarcoma , Adenoviridae/genética , Animales , Neoplasias Óseas/patología , Neoplasias Óseas/terapia , Línea Celular Tumoral , Niño , Humanos , Memoria Inmunológica , Ratones , Viroterapia Oncolítica/métodos , Virus Oncolíticos/genética , Osteosarcoma/genética , Osteosarcoma/patología , Osteosarcoma/terapia , Microambiente Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto
18.
Cancers (Basel) ; 13(21)2021 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-34771600

RESUMEN

Genomic techniques enable diagnosis and management of children and young adults with sarcomas by identifying high-risk patients and those who may benefit from targeted therapy or participation in clinical trials. Objective: to analyze the performance of an NGS gene panel for the clinical management of pediatric sarcoma patients. We studied 53 pediatric and young adult patients diagnosed with sarcoma, from two Spanish centers. Genomic data were obtained using the Oncomine Childhood Cancer Research Assay, and categorized according to their diagnostic, predictive, or prognostic value. In 44 (83%) of the 53 patients, at least one genetic alteration was identified. In 80% of these patients, the diagnosis was obtained (n = 11) or changed (n = 9), and thus genomic data affected therapy. The most frequent initial misdiagnosis was Ewing's sarcoma, instead of myxoid liposarcoma (FUS-DDDIT3), rhabdoid soft tissue tumor (SMARCB1), or angiomatoid fibrous histiocytoma (EWSR1-CREB1). In our series, two patients had a genetic alteration with an FDA-approved targeted therapy, and 30% had at least one potentially actionable alteration. NGS-based genomic studies are useful and feasible in diagnosis and clinical management of pediatric sarcomas. Genomic characterization of these rare and heterogeneous tumors also helps in the search for prognostic biomarkers and therapeutic opportunities.

19.
J Pers Med ; 11(7)2021 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-34199109

RESUMEN

Ovarian failure (OF) is a common cause of infertility usually diagnosed as idiopathic, with genetic causes accounting for 10-25% of cases. Whole-exome sequencing (WES) may enable identifying contributing genes and variant profiles to stratify the population into subtypes of OF. This study sought to identify a blood-based gene variant profile using accumulation of rare variants to promote precision medicine in fertility preservation programs. A case-control (n = 118, n = 32, respectively) WES study was performed in which only non-synonymous rare variants <5% minor allele frequency (MAF; in the IGSR) and coverage ≥ 100× were considered. A profile of 66 variants of uncertain significance was used for training an unsupervised machine learning model to separate cases from controls (97.2% sensitivity, 99.2% specificity) and stratify the population into two subtypes of OF (A and B) (93.31% sensitivity, 96.67% specificity). Model testing within the IGSR female population predicted 0.5% of women as subtype A and 2.4% as subtype B. This is the first study linking OF to the accumulation of rare variants and generates a new potential taxonomy supporting application of this approach for precision medicine in fertility preservation.

20.
J Immunother Cancer ; 9(7)2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34281988

RESUMEN

BACKGROUND: Glioblastoma (GBM) is a devastating primary brain tumor with a highly immunosuppressive tumor microenvironment, and treatment with oncolytic viruses (OVs) has emerged as a promising strategy for these tumors. Our group constructed a new OV named Delta-24-ACT, which was based on the Delta-24-RGD platform armed with 4-1BB ligand (4-1BBL). In this study, we evaluated the antitumor effect of Delta-24-ACT alone or in combination with an immune checkpoint inhibitor (ICI) in preclinical models of glioma. METHODS: The in vitro effect of Delta-24-ACT was characterized through analyses of its infectivity, replication and cytotoxicity by flow cytometry, immunofluorescence (IF) and MTS assays, respectively. The antitumor effect and therapeutic mechanism were evaluated in vivo using several immunocompetent murine glioma models. The tumor microenvironment was studied by flow cytometry, immunohistochemistry and IF. RESULTS: Delta-24-ACT was able to infect and exert a cytotoxic effect on murine and human glioma cell lines. Moreover, Delta-24-ACT expressed functional 4-1BBL that was able to costimulate T lymphocytes in vitro and in vivo. Delta-24-ACT elicited a more potent antitumor effect in GBM murine models than Delta-24-RGD, as demonstrated by significant increases in median survival and the percentage of long-term survivors. Furthermore, Delta-24-ACT modulated the tumor microenvironment, which led to lymphocyte infiltration and alteration of their immune phenotype, as characterized by increases in the expression of Programmed Death 1 (PD-1) on T cells and Programmed Death-ligand 1 (PD-L1) on different myeloid cell populations. Because Delta-24-ACT did not induce an immune memory response in long-term survivors, as indicated by rechallenge experiments, we combined Delta-24-ACT with an anti-PD-L1 antibody. In GL261 tumor-bearing mice, this combination showed superior efficacy compared with either monotherapy. Specifically, this combination not only increased the median survival but also generated immune memory, which allowed long-term survival and thus tumor rejection on rechallenge. CONCLUSIONS: In summary, our data demonstrated the efficacy of Delta-24-ACT combined with a PD-L1 inhibitor in murine glioma models. Moreover, the data underscore the potential to combine local immunovirotherapy with ICIs as an effective therapy for poorly infiltrated tumors.


Asunto(s)
Antígeno B7-H1/inmunología , Glioblastoma/tratamiento farmacológico , Inmunidad/inmunología , Inmunoterapia/métodos , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/metabolismo , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Glioblastoma/inmunología , Humanos , Ratones , Ratones Desnudos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...