Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros











Intervalo de año de publicación
1.
Comput Biol Med ; 179: 108898, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39047503

RESUMEN

Cannabidiol has been reported to interact with broad-spectrum biological targets with pleiotropic pharmacology including epilepsy although a cohesive mechanism is yet to be determined. Even though some studies propose that cannabidiol may manipulate glutamatergic signals, there is insufficient evidence to support cannabidiol direct effect on glutamate signaling, which is important in intervening epilepsy. Therefore, the present study aimed to analyze the epilepsy-related targets for cannabidiol, assess the differentially expressed genes with its treatment, and identify the possible glutamatergic signaling target. In this study, the epileptic protein targets of cannabidiol were identified using the Tanimoto coefficient and similarity index-based targets fishing which were later overlapped with the altered expression, epileptic biomarkers, and genetically altered proteins in epilepsy. The common proteins were then screened for possible glutamatergic signaling targets with differentially expressed genes. Later, molecular docking and simulation were performed using AutoDock Vina and GROMACS to evaluate binding affinity, ligand-protein stability, hydrophilic interaction, protein compactness, etc. Cannabidiol identified 30 different epilepsy-related targets of multiple protein classes including G-protein coupled receptors, enzymes, ion channels, etc. Glutamate receptor 2 was identified to be genetically varied in epilepsy which was targeted by cannabidiol and its expression was increased with its treatment. More importantly, cannabidiol showed a direct binding affinity with Glutamate receptor 2 forming a stable hydrophilic interaction and comparatively lower root mean squared deviation and residual fluctuations, increasing protein compactness with broad conformational changes. Based on the cheminformatic target fishing, evaluation of differentially expressed genes, molecular docking, and simulations, it can be hypothesized that cannabidiol may possess glutamate receptor 2-mediated anti-epileptic activities.


Asunto(s)
Cannabidiol , Epilepsia , Ácido Glutámico , Simulación del Acoplamiento Molecular , Transducción de Señal , Cannabidiol/farmacología , Cannabidiol/metabolismo , Epilepsia/tratamiento farmacológico , Epilepsia/metabolismo , Epilepsia/genética , Humanos , Transducción de Señal/efectos de los fármacos , Ácido Glutámico/metabolismo , Anticonvulsivantes/química , Anticonvulsivantes/uso terapéutico , Anticonvulsivantes/farmacología
2.
Plant Physiol Biochem ; 210: 108552, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38552262

RESUMEN

Nanoparticles play a vital role in modern agriculture to provide the nutrients required by plants. Herein, we report the preparation of calcium-doped zinc oxide nanoparticles (CZO NPs) via a simple and cost-effective co-precipitation method, with the aim of realizing increased fertilizer response. The synthesized nanoparticles were analyzed to study their physicochemical properties using various characterization techniques. The X-ray diffraction pattern showed a small shift in peak position towards higher values of 2θ and reduced crystal size after the zinc oxide (ZnO) matrix had been doped with Ca. Field-emission scanning electron microscopy images clearly revealed a grain-like surface morphology. The X-ray photoelectron spectroscopy study produced evidence of Zn2+ substitution by Ca2+ and enhanced Zn-O bond strengths in the CZO samples. Two major crops, maize (Zea mays L.) and wheat (Triticum aestivum L.) were selected to study the impact of the CZO NP-based nanofertilizer on plant growth. During the study, the effect of the CZO-based fertilizer on growth parameters such as seed germination, root and shoot length, plant height, root and stem width, number of leaves, and leaf size was studied based on comparisons with control plants. We observed significantly increased plant growth parameters after the application of the CZO NP-based fertilizers.


Asunto(s)
Calcio , Fertilizantes , Triticum , Zea mays , Óxido de Zinc , Óxido de Zinc/química , Óxido de Zinc/farmacología , Triticum/crecimiento & desarrollo , Triticum/efectos de los fármacos , Triticum/metabolismo , Zea mays/crecimiento & desarrollo , Zea mays/efectos de los fármacos , Zea mays/metabolismo , Calcio/metabolismo , Nanopartículas/química , Nanopartículas del Metal/química , Difracción de Rayos X , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Hojas de la Planta/crecimiento & desarrollo
3.
Comput Biol Chem ; 107: 107957, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37729848

RESUMEN

Delta-9-tetrahydrocannabinol, a component of marijuana, interacts with cannabinoid receptors in brain involved in memory, cognition, and emotional control. However, marijuana use and schizophrenia development is a complicated and contentious topic. As a result, more investigation is needed to understand this relationship. Through the functional enrichment analysis, we report the delta-9-tetrahydrocannabinol to manipulate the homeostatic biological process and molecular function of different macromolecules. Additionally, using molecular docking and subsequent processing for molecular simulations, we assessed the binding ability of delta-9-tetrahydrocannabinol with the estrogen-related protein, dopamine receptor 5, and hyaluronidase. It was found that delta-9-tetrahydrocannabinol may have an impact on the brain's endocannabinoid system and may trigger the schizophrenia progression in vulnerable people. Delta-9-tetrahydrocannabinol may interfere with the biological function of 18 proteins linked to schizophrenia and disrupt the synaptic transmission (dopamine, glutamine, and gamma-aminobutyric acid). It was discovered that it may affect lipid homeostasis, which is closely related to membrane integrity and synaptic plasticity. The negative control of cellular and metabolic processes, fatty acids binding /activity, and the manipulated endocannabinoid system (targeting cannabinoid receptors) were also concerned with delta-9-tetrahydrocannabinol. Hence, this may alter neurotransmitter signaling involved in memory, cognition, and emotional control, showing its direct impact on brain physiological processes. This may be one of the risk factors for schizophrenia development which is also closely tied to some other variables such as frequency, genetic vulnerability, dosage, and individual susceptibility.


Asunto(s)
Cannabis , Esquizofrenia , Humanos , Dronabinol/farmacología , Endocannabinoides , Neurofisiología , Simulación del Acoplamiento Molecular , Receptores de Cannabinoides
4.
Comput Biol Med ; 146: 105668, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35667894

RESUMEN

Benzalacetophenones, precursors of flavonoids are aromatic ketones and enones and possess the immunostimulant as well as antiviral activities. Thus, benzalacetophenones were screened against the COVID-19 that could be lethal in patients with compromised immunity. We considered ChEBI recorded benzalacetophenone derivative(s) and evaluated their activity against 3C-like protease (3CLpro), papain-like protease (PLpro), and spike protein of SARS-Cov-2 to elucidate their possible role as antiviral agents. The probable targets for each compound were retrieved from DIGEP-Pred at 0.5 pharmacological activity and all the modulated proteins were enriched to identify the probably regulated pathways, biological processes, cellular components, and molecular functions. In addition, molecular docking was performed using AutoDock 4 and the best-identified hits were subjected to all-atom molecular dynamics simulation and binding energy calculations using molecular mechanics Poisson-Boltzmann surface area (MMPBSA). The compound 4-hydroxycordoin showed the highest druglikeness score and regulated nine proteins of which five were down-regulated and four were upregulated. Similarly, enrichment analysis identified the modulation of multiple pathways concerned with the immune system as well as pathways related to infectious and non-infectious diseases. Likewise, 3'-(3-methyl-2-butenyl)-4'-O-ß-d-glucopyranosyl-4,2'-dihydroxychalcone with 3CLpro, 4-hydroxycordoin with PLpro and mallotophilippen D with spike protein receptor-binding domain showed highest binding affinity, revealed stable interactions during the simulation, and scored binding free energy of -26.09 kcal/mol, -16.28 kcal/mol, and -39.2 kcal/mol, respectively. Predicted anti-SARS-CoV-2 activities of the benzalacetophenones reflected the requirement of wet lab studies to develop novel antiviral candidates.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Chalcona , Antivirales/química , Antivirales/farmacología , Proteasas 3C de Coronavirus , Cisteína Endopeptidasas/química , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Inhibidores de Proteasas/química , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus
5.
J Diabetes Metab Disord ; 21(1): 429-438, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35673455

RESUMEN

Background: Ficus benghalensis L. is traditionally used to manage diabetes; also used in various herbal formulations, and is indicated as an insulin sensitizer. Hence, present work attempted in identifying the probable lead hits to promote glucose uptake via computational approach followed by experimental evaluation of hydroalcoholic extract of Ficus benghalensis L. bark in yeast cells. Methods: The in vitro assay for glucose uptake was performed in the baker yeast whereas in-silico study involved retrieving the phytoconstituents from open sources, and predicting for probable targets of diabetes followed by drug-likeness score, probable side effects, and ADMET profile. Homology modeling was performed to construct the target protein glucose transporter-2. In addition, the binding affinity of each ligand with glucose transporter was predicted using AutoDock 4.2. Results: A total of 17 phytoconstituents from F. benghalensis were identified to possess the anti-diabetic effects. Among them, 4-methoxybenzoic acid scored the highest drug-likeness score and lupeol acetate had the maximum binding affinity of -8.02 kcal/mol with 9 pi-interactions via Tyr324, Phe323, Ile319, Ile200, Ile28, Phe24, and Ala451. Similarly, the extract showed the highest glucose uptake efficacy in yeast cells at 500 µg/mL. Conclusion: Herein the present study reflected the probable activity of the phytoconstituents from F. benghalensis in promoting the glucose uptake via the in silico and in vitro approaches.

6.
J Diabetes Metab Disord ; 21(1): 419-427, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35673484

RESUMEN

Background: Type-2 diabetes mellitus is a common metabolic disorder characterized by insulin resistance, a relative impairment in insulin secretion, and a certain degree of genetic predisposition. The rapid rise in the prevalence of diabetes mellitus around the world has assisted in the development of new pharmacologically active compounds. The current study was aimed to investigate and validate the anti-diabetic activity of wild-grown plant Duranta repens L. Material and methods: In-silico molecular docking via AutoDock tools 4.2 and in-vitro glucose uptake assay using yeast cells was performed to investigate the anti-diabetic property of plant Duranta repens. Further, mRNA-based gene ontology enrichment analysis was performed to predict the imitated ontology by the bio-actives from Duranta repens. Results: The in-silico study results reveal that among the 9 active phytoconstituents docked against GLUT-2 protein, α-onocerin possessed the highest binding affinity of -10.23 kcal/mol with no predicted adverse effects and also complies with Lipinski's rule of five. Also, in-vitro studies reflected in a 5 mM glucose solution, hydro-alcoholic extract of Duranta repens at different concentrations enhanced glucose uptake in yeast cells. Conclusion: Duranta repens extract enhanced the glucose uptake in yeast cells which may be due to the presence of α-onocerin; possessed the better interaction. Also, no adverse effects were predicted for α-onocerin. Thus, it can be speculated  that Duranta repens may possess anti-diabetic activity which may be due to α-onocerin and other related bioactives; needs to be further confirmed vi a  experimental studies.

7.
Comput Biol Med ; 142: 105223, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35033877

RESUMEN

Silymarin is used as a hepatoprotective agent since ancient times which could be via its potent anti-oxidant effect. However, the mode of silymarin for the hepatoprotective effect has not been established with the targets involved in hepatic cirrhosis. The present study investigated the multiple interactions of the flavonolignans from Silybum marianum with targets involved in hepatic cirrhosis using a series of system biology approaches. Chemo-informative tools and databases i.e. DIGEP-Pred and DisGeNET were used to predict the targets of flavonolignans and proteins involved in liver cirrhosis respectively. Further, STRING was used to enrich the protein-protein interaction for the flavonolignans-modulated targets. Similarly, molecular docking was performed using AutoDock Vina. Additionally, molecular dynamics simulation and MM-PBSA calculations were carried out for the lead-hit complexes by GROMACS. Thirteen flavonolignans were identified from S. marianum, in which silymonin exhibited the highest drug-likeness score i.e. 1.09. Similarly, CTNNB1 was found to be regulated by the 12 different flavonolignans and was majorly expressed within the compound(s)-protein(s)-pathway(s) network. Further, silymonin had the highest binding affinity; binding energy -9.2 kcal/mol with the CTNNB1 and formed very stable hydrogen bond interactions with Arg332, Ser336, Lys371, and Arg475 throughout 100 ns molecular dynamic production run. The binding free energy of CTNNB1-silymonin complex was found to be -15.83 ± 2.71 kcal/mol. The hepatoprotective property of S. marianum may be due to the presence of silymonin and silychristin; this could majorly modulate CTNNB1, HMOX1, and CASP8 in combination with other flavonolignans. Our findings further suggest designing the in-vitro and in-vivo studies to validate the interaction of flavonolignans with identified targets to strengthen present findings of S. marianum as a hepatoprotective..


Asunto(s)
Silimarina , Biología , Silybum marianum/química , Silybum marianum/metabolismo , Simulación del Acoplamiento Molecular , Extractos Vegetales , Silimarina/química , Silimarina/metabolismo , Silimarina/farmacología
8.
J Biomol Struct Dyn ; 40(12): 5295-5308, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-33459174

RESUMEN

Traditionally, Withania somnifera is widely used as an immune booster, anti-viral, and for multiple medicinal purposes. The present study investigated the withanolides as an immune booster and anti-viral agents against the coronavirus-19. Withanolides from Withania somnifera were retrieved from the open-source database, their targets were predicted using DIGEP-Pred, and the protein-protein interaction was evaluated. The drug-likeness score and intestinal absorptivity of each compound were also predicted. The network of compounds, proteins, and modulated pathways was constructed using Cytoscape, and docking was performed using autodock4.0, and selected protein-ligand complexes were subjected to 100 ns Molecular Dynamics simulations. The molecular dynamics trajectories were subjected to free energy calculation by the MM-GBSA method. Withanolide_Q was predicted to modulate the highest number of proteins, showed human intestinal absorption, and was predicted for the highest drug-likeness score. Similarly, combined network interaction identified Withanolide_Q to target the highest number of proteins; RAC1 was majorly targeted, and fluid shear stress and atherosclerosis associated pathway were chiefly regulated. Similarly, Withanolide_D and Withanolide_G were predicted to have a better binding affinity with PLpro, Withanolide_M with 3CLpro, and Withanolide_M with spike protein based on binding energy and number of hydrogen bond interactions. MD studies suggested Withanoside_I with the highest binding free energy (ΔGbind-31.56 kcal/mol) as the most promising inhibitor. Among multiple withanolides from W. somnifera, Withanolide_D, Withanolide_G, Withanolide_M, and Withanolide_Q were predicted as the lead hits based on drug-likeness score, modulated proteins, and docking score to boost the immune system and inhibit the COVID-19 infection, which could primarily act against COVID-19. HighlightsWithanolides are immunity boosters.Withanolides are a group of bio-actives with potential anti-viral properties.Withanolide_G, Withanolide_I, and Withanolide_M from Withania somnifera showed the highest binding affinity with PLpro, 3CLpro, and spike protein, respectively.Withanolides from Withania somnifera holds promising anti-viral efficacy against COVID-19.Communicated by Vsevolod Makeev.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Withania , Witanólidos , Humanos , Glicoproteína de la Espiga del Coronavirus/metabolismo , Withania/química , Withania/metabolismo , Witanólidos/química , Witanólidos/metabolismo , Witanólidos/farmacología
9.
J Ayurveda Integr Med ; 13(1): 100374, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33250601

RESUMEN

The Ministry of AYUSH recommended the use of a decoction of the mixture of Ocimum tenuiflorum, Cinnamomum verum, Piper nigrum, Zingiber officinale, and Vitis vinifera as a preventive measure by boosting the immunity against the severity of infection caused by a novel coronavirus (COVID-19). The present study aimed to identify the probable modulated pathways by the combined action of AYUSH recommended herbal tea and golden milk formulation as an immune booster against COVID-19. Reported phytoconstituents of all the medicinal plants were retrieved from the ChEBI database, and their targets were predicted using DIGEP-Pred. STRING database and Cytoscape were used to predict the protein-protein interaction and construct the network, respectively. Likewise, MolSoft and admet SAR2.0 were used to predict the druglikeness score and ADMET profile of phytoconstituents. The study identified the modulation of HIF-1, p53, PI3K-Akt, MAPK, cAMP, Ras, Wnt, NF-kappa B, IL-17, TNF, and cGMP-PKG signaling pathways to boost the immune system. Further, multiple pathways were also identified which are involved in the regulation of pathogenesis of the multiple infections and non-infectious diseases due to the lower immune system. Results indicated that the recommended herbal formulation not only modulated the pathways involved in boosting the immunity but also modulated the multiple pathways that are contributing to the progression of multiple disease pathogenesis which would add the beneficial effect in the co-morbid patients of hypertension and diabetes. The study provides the scientific documentation of the role of the Ayurvedic formulation to combat COVID-19.

10.
Front Pharmacol ; 13: 1052849, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36686654

RESUMEN

Aim: The purpose of this study was to establish a mode of action for diosgenin against breast cancer employing a range of system biology tools and to corroborate its results with experimental facts. Methodology: The diosgenin-regulated domains implicated in breast cancer were enriched in the Kyoto Encyclopedia of Genes and Genomes database to establish diosgenin-protein(s)-pathway(s) associations. Later, molecular docking and the lead complexes were considered for molecular dynamics simulations, MMPBSA, principal component, and dynamics cross-correlation matrix analysis using GROMACS v2021. Furthermore, survival analysis was carried out for the diosgenin-regulated proteins that were anticipated to be involved in breast cancer. For gene expression analyses, the top three targets with the highest binding affinity for diosgenin and tumor expression were examined. Furthermore, the effect of diosgenin on cell proliferation, cytotoxicity, and the partial Warburg effect was tested to validate the computational findings using functional outputs of the lead targets. Results: The protein-protein interaction had 57 edges, an average node degree of 5.43, and a p-value of 3.83e-14. Furthermore, enrichment analysis showed 36 KEGG pathways, 12 cellular components, 27 molecular functions, and 307 biological processes. In network analysis, three hub proteins were notably modulated: IGF1R, MDM2, and SRC, diosgenin with the highest binding affinity with IGF1R (binding energy -8.6 kcal/mol). Furthermore, during the 150 ns molecular dynamics (MD) projection run, diosgenin exhibited robust intermolecular interactions and had the least free binding energy with IGF1R (-35.143 kcal/mol) compared to MDM2 (-34.619 kcal/mol), and SRC (-17.944 kcal/mol). Diosgenin exhibited the highest cytotoxicity against MCF7 cell lines (IC50 12.05 ± 1.33) µg/ml. Furthermore, in H2O2-induced oxidative stress, the inhibitory constant (IC50 7.68 ± 0.51) µg/ml of diosgenin was lowest in MCF7 cell lines. However, the reversal of the Warburg effect by diosgenin seemed to be maximum in non-cancer Vero cell lines (EC50 15.27 ± 0.95) µg/ml compared to the rest. Furthermore, diosgenin inhibited cell proliferation in SKBR3 cell lines more though. Conclusion: The current study demonstrated that diosgenin impacts a series of signaling pathways, involved in the advancement of breast cancer, including FoxO, PI3K-Akt, p53, Ras, and MAPK signaling. Additionally, diosgenin established a persistent diosgenin-protein complex and had a significant binding affinity towards IGF1R, MDM2, and SRC. It is possible that this slowed down cell growth, countered the Warburg phenomenon, and showed the cytotoxicity towards breast cancer cells.

11.
J Ethnopharmacol ; 284: 114761, 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-34678414

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Bark of Ficus benghalensis L. (family: Moraceae), commonly known as Banyan is recorded as Nyagrodha in Ayurvedic Pharmacopeia of India to manage burning sensation, obesity, diabetes, bleeding disorders, thirst, skin diseases, wounds, and dysmenorrhoea. However, the effect of F. benghalensis bark over glycolysis, gluconeogenesis, and appetite regulation in insulin-resistant pathogenesis has not been reported yet. AIM OF THE STUDY: The present study aimed to investigate the effect of hydroalcoholic extract of F. benghalensis bark in gluconeogenesis, glycolysis, and appetite regulation in fructose-induced insulin resistance in experimental rats. MATERIALS AND METHODS: Male Wister rats were supplemented with fructose in drinking water (10% w/v for 42 days and 20% w/v for next 12 days; a total of 54 days); insulin resistance was confirmed via the elevated area under the curve of the glucose during oral glucose tolerance test after 54 days and was subjected with extract treatment for next 30 days. After 30 days of treatment, animals were fasted to perform oral glucose and insulin tolerance test to estimate glucose and insulin levels. The blood sample was collected for biochemical estimation and the liver homogenate was prepared to estimate hepatic enzymes and enzymatic and non-enzymatic anti-oxidant biomarkers followed by histopathological evaluation. Also, glycogen content was quantified in gastrocnemius muscle and liver homogenates. Further, reported bioactives from the F. benghalensis were retrieved from the ChEBI database and docked against hexokinase, phosphofructokinase, glucose-6-phosphatase, lactate dehydrogenase, and fructose-1,6-biphosphatase to identify the probable lead hits against the enzymes involved in gluconeogenesis. RESULTS: Treatment with the F. benghalensis bark extract significantly increased the body weight and food intake and significantly decreased fructose supplemented water intake. Further, treatment with extract significantly increased the exogenous glucose clearance and well responded to the exogenous insulin. Further, extract treatment improved lipid metabolism, ameliorated plasma leptin, and multiple enzymatic and non-enzymatic antioxidant biomarkers. Likewise, it also improved gluconeogenesis mediated pathogenesis of non-alcoholic fatty liver injury. Additionally, molecular docking also identified mucusisoflavone A and B as lead hits in downregulating gluconeogenesis. CONCLUSION: Hydroalcoholic extract of F. benghalensis bark may prevent insulin resistance by downregulating gluconeogenesis and improving the appetite in fructose-induced insulin-resistant rats.


Asunto(s)
Ficus/química , Fructosa/toxicidad , Corteza de la Planta/química , Extractos Vegetales/uso terapéutico , Animales , Peso Corporal/efectos de los fármacos , Conducta Alimentaria/efectos de los fármacos , Resistencia a la Insulina , Masculino , Extractos Vegetales/química , Ratas , Ratas Wistar
12.
Comput Biol Med ; 141: 105035, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34802711

RESUMEN

Cyperus rotundus L. is used to treat multiple clinical conditions like inflammation, diarrhea, pyrosis, and metabolic disorders including diabetes and obesity. The present study aimed to predict the interaction of reported bioactives from Cyperus rotundus against obesity via network pharmacology and to evaluate the efficacy of hydroalcoholic extract of Cyperus rotundus against the olanzapine-induced weight gain and metabolic disturbances in experimental animals. Reported phytochemicals of Cyperus rotundus were retrieved from the open-source database(s) and published literature and their targets were predicted using SwissTargetPrediction, enriched in STRING, and bioactives-proteins-pathways network was constructed using Cytoscape. Further, the hydroalcoholic extract of Cyperus rotundus (100, 200, and 400 mg/kg/day, p.o.) was co-administered with olanzapine (2 mg/kg, i.p.) for 21 days in Sprague Dawley rats. During treatment, body weight and food intake were recorded; after the successful completion of 21 days of treatment, animals were fasted to perform oral glucose and insulin tolerance tests. Further, the animals were euthanized; blood and abdominal fat were collected for lipid profiling and histopathological examination respectively. Herein, network pharmacology predicted neuroactive ligand-receptor interaction as a primarily modulated pathway and protein tyrosine phosphatase 1b as a majorly triggered protein via the combined action of bioactives. Further, Cyperus rotundus significantly reversed weight gain, cumulative food intake, ameliorated the lipid and glucose metabolism, and promoted energy expenditure.


Asunto(s)
Cyperus , Animales , Olanzapina , Extractos Vegetales/farmacología , Ratas , Ratas Sprague-Dawley , Aumento de Peso
13.
In Silico Pharmacol ; 9(1): 50, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34458069

RESUMEN

Postprandial hyperglycemia is associated with an increase in blood glucose levels after a meal, which is further associated with various risk factors like cardiovascular diseases. α-amylase is a digestive enzyme and secreted by the salivary glands and pancreas, which helps to catalyze the hydrolysis of the internal α-1,4-glycosidic linkages in starch breaking them into smaller units. Hence, the present study is aimed to identify flavonoids from the fruit pulp of Feronia elephantum as α-amylase inhibitors via in-silico and in-vitro protocols. In-silico tools like ADVERPred, PubChem, MolSoft, Discovery studio 2019, and Autodock 4.0 were used to predict the information related to phytoconstituents, drug-likeness character, and probable side effects. In-vitro α-amylase inhibitory activity was performed with five different concentrations of flavonoid fraction of hydroalcoholic extract of the fruit pulp of Feronia elephantum using 1% starch solution and DNS reagent. Four flavonoids were identified from 25 bio-actives present in the fruit pulp of Feronia elephantum. Three bio-actives were predicted to possess a positive drug-likeness score, from which 5,4-dihydroxy3-3(3-methyl-but2-enyl)3,5,6-trimethoxy-flavone-7-O-ß-d-Glucopyranoside was predicted to possess the highest drug-likeness score of 0.70. Vitexin and 5,4-dihydroxy3-3(3-methyl-but2-enyl)3,5,6-trimethoxy-flavone-7-O-ß-d-Glucopyranoside were predicted to possess nephrotoxicity as an adverse effect. The percent inhibition of α-amylase by a flavonoid-rich fraction at 100 µg/ml was found to be 45.95% as compared to standard acarbose with 74.79% inhibition at 100 µg/ml. Further, docking studies predicted that vitexin possessed the highest binding affinity (binding energy - 7.98 kcal/mol) as compared to standard acarbose with binding energy - 5.24 kcal/mol. There were no significant side effects predicted, in-vitro α-amylase inhibitory activity of the flavonoid-rich fraction may be due to the presence of vitexin, predicted via in-silico molecular docking; further, which needs to be further validated via in-vivo protocols.

14.
J Diabetes Metab Disord ; 20(1): 41-48, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34178822

RESUMEN

AIM: The present study aimed to investigate the effect of Zingiber officinale (ZO) extract on weight gain, food intake, locomotor activity, and lipid and glucose metabolism in olanzapine-treated rats. METHODS: The hydroalcoholic extract of ZO was prepared by macerating the coarse dry powder in 70% v/v ethanol for 7 days, filtered, and concentrated under reduced pressure. Animals were divided into six groups containing six animals in each. Three doses of extract (100, 200, and 400 mg/kg, p.o.) were co-administered with olanzapine 2 mg/kg i.p for 21 days. Bodyweight and food intake were recorded at the interval of three days and locomotor activity once a week. At the end of the study oral glucose tolerance test was performed followed by the estimation of lipid profile. RESULTS: Co-administration of hydroalcoholic extract of ZO with olanzapine ameliorated olanzapine-induced weight gain and hyperphagia. Similarly, ZO extract also improved pancreatic ß-cell function and glucose and lipid metabolism. CONCLUSIONS: ZO extract ameliorated olanzapine-induced weight gain and hyperphagia by improving pancreatic ß-cell functions and lipid metabolism.

15.
3 Biotech ; 11(5): 238, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33968581

RESUMEN

A total of 21 different bioactives were identified from F. benghalensis in which 3 molecules, i.e., apigenin, 3',4',5,7-tetrahydroxy-3-methoxyflavone, and kaempferol were predicted to target the highest number of proteins involved in diabetic pathogenesis in which protein tyrosine phosphatase 1b was primarily targeted. Similarly, a docking study identified ursolic acid to have the highest binding affinity with protein tyrosine phosphatase 1b. The combined synergic network analysis identified PI3K/Akt signaling pathway to be primarily modulated followed by the calcium signaling pathway. Similarly, in oral glucose tolerance test, we observed the efficacy of hydroalcoholic extract of F. benghalensis to lower the total area under the curve of glucose and increase total area under curve of insulin for 2 hours. Likewise, hydroalcoholic extract reversed the altered homeostatic hepatic enzymes after 28 days of treatments. Similarly, the extract also enhanced the antioxidant enzymes level like catalase and superoxide dismutase in liver homogenate. In summary, hydroalcoholic extract of F. benghalensis bark may act as an antidiabetic agent by enhancing the glycolysis, decreasing gluconeogenesis, promoting glucose uptake, enhancing insulin secretion, and maintaining pancreatic ß-cell mass via PI3K/Akt signaling pathway and downregulating the function of  protein tyrosine phosphatase 1b. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-021-02788-7.

16.
In Silico Pharmacol ; 9(1): 30, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33928007

RESUMEN

PTP1B is identified as the insulin signaling pathway downregulator; involved in pancreatic ß-cell apoptosis. Further, it associates in regulating multiple pathways in diabetes mellitus; kindled us to identify the binding affinity of bioactives from Cymbopogon citratus by targeting PTP1B and identify the probably associated with it; further identifying the probable pathways involved in diabetes mellitus. In this regard, ChEBI database was used to retrieve bio-actives from C. citrates and 3D structures for the same were obtained from the PubChem database. The energy of bioactives was minimized and converted into ligand and the docking was carried using autodock 4.0 against PTP1B. Further, multiple characters of bio-actives like drug-likeness score, ADMET profile, probable adverse effects, and boiled egg model for bioavailability were also studied. Swertiajaponin was predicted for the highest drug-likeness score i.e. 0.26. However, swertiajaponin was predicted with the highest probable side effect of nephrotoxicity with pharmacological activity of 0.478. Similarly, swertiajaponin was predicted for the highest binding affinity with PTP1B with the binding energy of - 8.3 kcal/mol. Likewise, KEGG identified 80 pathways associated with PTP1B modulation in which 7 pathways were involved in diabetes mellitus in which FoxO signaling pathway was predicted to have the least false discovery rate by modulating 7 genes. Swertiajaponin could act as the potent inhibitor of PTP1B; scored highest druglikeness score but possessed minimum GIT absorptivity; further, PTP1B was identified to be linked with multiple pathways that are concerned with diabetes mellitus.

17.
3 Biotech ; 11(3): 119, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33585152

RESUMEN

The majority of the bioactives under investigation were predicted to target TNF receptor-associated factor 5 in the Janus kinase/signal transducers and activators of the transcription pathway. Similarly, druglikeness prediction identified vitexilactone to possess the highest druglikeness score, i.e., 0.88. Furthermore, proteins targeted in the Janus kinase/signal transducers and activators of transcription pathway were also predicted to regulate multiple pathways, i.e., ErbB, AGE-RAGE, NF-kappa B, Measles, insulin, mTOR, chemokine, Ras, and pathways associated with infectious and non-infectious pathogenesis, where the immune system is compromised. Similarly, the docking study identified sesaminol 2-O-ß-D-gentiobioside to possess the highest binding affinity with 3CLpro, PLpro, and spike proteins. Furthermore, phylogeny comparison identified the common protein domains with other stains of microbes like murine hepatitis virus strain A59, avian infectious bronchitis virus, and porcine epidemic diarrhea virus CV777.

18.
In Silico Pharmacol ; 9(1): 3, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33442530

RESUMEN

Traditionally, Tinospora cordifolia is commonly used in the treatment of diabetes and obesity; has been evaluated for their anti-diabetic and anti-obese potency in experimental animal models. However, the binding affinity of multiple bioactives with various proteins involved in the pathogenesis of diabetes and obesity has not been reported yet. Hence, the present study aimed to assess the binding affinity of multiple bioactives from T. cordifolia with various targets involved in the pathogenesis of diabetes and obesity. The ligands and targets were retrieved from the PubChem and Protein Data Bank respectively and docked using autodock4.0. Druglikeness and absorption, distribution, metabolism, excretion, and toxicity profile were predicted using Molsoft and admetSAR1 respectively. The multiple bioactives from T. cordifolia were identified to interact with multiple proteins involved in the pathogenesis of diabetes/obesity, i.e., isocolumbin (- 9 kcal/mol) with adiponectin (PDB: 4DOU), ß-sitosterol (- 10.9 kcal/mol) with cholesteryl ester transfer protein (PDB: 2OBD), tinocordiside (- 6.9 kcal/mol) with lamin A/C (PDB: 3GEF), berberine (- 9.5 kcal/mol) with JNK1 (PDB:3ELJ), ß-sitosterol & isocolumbin (- 10.1 kcal/mol) with peroxisome proliferator-activated receptor-γ (PDB:4CI5), berberine (- 7.5 kcal/mol) with suppressor of cytokine signaling 3 (PDB: 2BBU), isocolumbin (- 9.6 kcal/mol) with pancreatic α-amylase (PDB: 1B2Y), isocolumbin (- 9 kcal/mol) with α-glucosidase (PDB: 3TOP), and ß-sitosterol (- 10.8 kcal/mol) with aldose reductase (PDB: 3RX2). Similarly, among the selected bioactives, tembetarine scored highest druglikeness score, i.e., 1.21. In contrast, isocolumbin scored lowest drug-likeness character i.e. - 0.52. The predicted result of phytochemicals from T. cordifolia for acute oral toxicity, rat acute toxicity, fish toxicity, drug-likeness score, and aqueous solubility showed the probability of lower side/adverse effects in human consumption. The study suggests processing for bioactives from T. cordifolia against diabetes and obesity via in-vitro and in-vivo approaches.

19.
RSC Adv ; 11(9): 5065-5079, 2021 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-35424441

RESUMEN

The present study aimed to investigate the binding affinity of andrographolide and its derivative i.e., 14-deoxy-11,12-didehydroandrographolide with targets related to COVID-19 and their probable role in regulating multiple pathways in COVID-19 infection. SMILES of both compounds were retrieved from the PubChem database and predicted for probably regulated proteins. The predicted proteins were queried in STRING to evaluate the protein-protein interaction, and modulated pathways were identified concerning the KEGG database. Drug-likeness and ADMET profile of each compound was evaluated using MolSoft and admetSAR 2.0, respectively. Molecular docking was carried using Autodock 4.0. Andrographolide and its derivative were predicted to have a high binding affinity with papain-like protease, coronavirus main proteinase, and spike protein. Molecular dynamics simulation studies were performed for each complex which suggested the strong binding affinities of both compounds with targets. Network pharmacology analysis revealed that both compounds modulated the immune system by regulating chemokine signaling, Rap1 signaling, cytokine-cytokine receptor interaction, MAPK signaling, NF-kappa B signaling, RAS signaling, p53 signaling, HIF-1 signaling, and natural killer cell-mediated cytotoxicity. The study suggests strong interaction of andrographolide and 14-deoxy-11,12-didehydroandrographolide against COVID-19 associated target proteins and exhibited different immunoregulatory pathways.

20.
Nat Prod Bioprospect ; 10(5): 325-335, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32772313

RESUMEN

Anthraquinone derivatives are identified for their immune-boosting, anti-inflammatory, and anti-viral efficacy. Hence, the present study aimed to investigate the reported anthraquinone derivatives as immune booster molecules in COVID-19 infection and evaluate their binding affinity with three reported targets of novel coronavirus i.e. 3C-like protease, papain-like protease, and spike protein. The reported anthraquinone derivatives were retrieved from an open-source database and filtered based on a positive druglikeness score. Compounds with positive druglikeness scores were predicted for their targets using DIGEP-Pred and the interaction among modulated proteins was evaluated using STRING. Further, the associated pathways were recorded concerning the Kyoto Encyclopedia of Genes and Genomes pathway database. Finally, the docking was performed using autodock4 to identify the binding efficacy of anthraquinone derivatives with 3C-like protease, papain-like protease, and spike protein. After docking the pose of ligand scoring minimum binding energy was chosen to visualize the ligand-protein interaction. Among 101 bioactives, 36 scored positive druglikeness score and regulated multiple pathways concerned with immune modulation and (non-) infectious diseases. Similarly, docking study revealed torososide B to possess the highest binding affinity with papain-like protease and 3C-like protease and 1,3,6-trihydroxy-2-methyl-9,10-anthraquinone-3-O-(6'-O-acetyl)-ß-D-xylopyranosyl-(1 → 2)-ß-D-glucopyranoside with spike protein.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA