Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Indian J Med Res ; 153(1 & 2): 166-174, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33818474

RESUMEN

BACKGROUND & OBJECTIVES: Several phylogenetic classification systems have been devised to trace the viral lineages of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, inconsistency in the nomenclature limits uniformity in its epidemiological understanding. This study provides an integration of existing classifications and describes evolutionary trends of the SARS-CoV-2 strains circulating in India. METHODS: The whole genomes of 330 SARS-CoV-2 samples were sequenced using next-generation sequencing (NGS). Phylogenetic and sequence analysis of a total of 3014 Indian SARS-CoV-2 sequences from 20 different States/Union Territories (January to September 2020) from the Global Initiative on Sharing All Influenza Data (GISAID) database was performed to observe the clustering of Nextstrain and Phylogenetic Assignment of Named Global Outbreak LINeages (Pangolin) lineages with the GISAID clades. The identification of mutational sites under selection pressure was performed using Mixed Effects Model of Evolution and Single-Likelihood Ancestor Counting methods available in the Datamonkey server. RESULTS: Temporal data of the Indian SARS-CoV-2 genomes revealed that except for Uttarakhand, West Bengal and Haryana that showed the circulation of GISAID clade O even after July 2020, the rest of the States showed a complete switch to GR/GH clades. Pangolin lineages B.1.1.8 and B.1.113 identified within GR and GH clades, respectively, were noted to be indigenous evolutions. Sites identified to be under positive selection pressure within these clades were found to occur majorly in the non-structural proteins coded by ORF1a and ORF1b. INTERPRETATION & CONCLUSIONS: This study interpreted the geographical and temporal dominance of SARS-CoV-2 strains in India over a period of nine months based on the GISAID classification. An integration of the GISAID, Nextstrain and Pangolin classifications is also provided. The emergence of new lineages B.1.1.8 and B.1.113 was indicative of host-specific evolution of the SARS-CoV-2 strains in India. The hotspot mutations such as those driven by positive selection need to be further characterized.


Asunto(s)
Evolución Molecular , Genoma Viral , Filogenia , SARS-CoV-2/genética , COVID-19/virología , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , India/epidemiología
2.
Biochim Biophys Acta ; 1850(9): 1719-28, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25907330

RESUMEN

BACKGROUND: Helicoverpa armigera (Lepidoptera) feeds on various plants using diverse digestive enzymes as one of the survival tool-kit. The aim of the present study was to understand biochemical properties of recombinant α-amylases of H. armigera viz., HaAmy1 and HaAmy2. METHODS: The open reading frames of HaAmy1 and HaAmy2 were cloned in Pichia pastoris and expressed heterologously. Purified recombinant enzymes were characterized for their biochemical and biophysical attributes using established methods. RESULTS: Sequence alignment and homology modeling showed that HaAmy1 and HaAmy2 were conserved in their amino acid sequences and structures. HaAmy1 and HaAmy2 showed optimum activity at 60°C; however, they differed in their optimum pH. Furthermore, HaAmy2 showed higher affinity for starch and amylopectin whereas HaAmy1 had higher catalytic efficiency. HaAmy1 and HaAmy2 were inhibited to the same magnitude by a synthetic amylase inhibitor (acarbose) while wheat amylase inhibitor showed about 2-fold higher inhibition of HaAmy1 than HaAmy2 at pH7 while 6-fold difference at pH11. Interactions of HaAmy1 and HaAmy2 with wheat amylase inhibitor revealed 2:1 stoichiometric ratio and much more complex interaction with HaAmy1. CONCLUSIONS: The diversity of amylases in perspective of their biochemical and biophysical properties, and their differential interactions with amylase inhibitors signify the potential role of these enzymes in adaptation of H. armigera on diverse plant diets. GENERAL SIGNIFICANCE: Characterization of digestive enzymes of H. armigera provides the molecular basis for the polyphagous nature and thus could assist in designing future strategies for the insect control.


Asunto(s)
Lepidópteros/enzimología , alfa-Amilasas/química , Secuencia de Aminoácidos , Animales , Concentración de Iones de Hidrógeno , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Análisis de Secuencia de Proteína , alfa-Amilasas/antagonistas & inhibidores , alfa-Amilasas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...