Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 61(27): e202203062, 2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-35358356

RESUMEN

Cation ordering in solids is important for controlling physical properties and leads to ilmenite (FeTiO3 ) and LiNbO3 type derivatives of the corundum structure, with ferroelectricity resulting from breaking of inversion symmetry in the latter. However, a hypothetical third ABO3 derivative with R32 symmetry has never been observed. Here we show that Co2 InSbO6 recovered from high pressure has a new, ordered-R32 A2 BCO6 variant of the corundum structure. Co2 InSbO6 is also remarkable for showing two cation redistributions, to (Co0.5 In0.5 )2 CoSbO6 and then Co2 InSbO6 variants of the ordered-LiNbO3 A2 BCO6 structure on heating. The cation distributions change magnetic properties as the final ordered-LiNbO3 product has a sharp ferrimagnetic transition unlike the initial ordered-R32 phase. Future syntheses of metastable corundum derivatives at pressure are likely to reveal other cation-redistribution pathways, and may enable ABO3 materials with the R32 structure to be discovered.

2.
Nat Commun ; 12(1): 6356, 2021 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-34737260

RESUMEN

Magnetite (Fe3O4) is of fundamental importance for the Verwey transition near TV = 125 K, below which a complex lattice distortion and electron orders occur. The Verwey transition is suppressed by chemical doping effects giving rise to well-documented first and second-order regimes, but the origin of the order change is unclear. Here, we show that slow oxidation of monodisperse Fe3O4 nanoparticles leads to an intriguing variation of the Verwey transition: an initial drop of TV to a minimum at 70 K after 75 days and a followed recovery to 95 K after 160 days. A physical model based on both doping and doping-gradient effects accounts quantitatively for this evolution between inhomogeneous to homogeneous doping regimes. This work demonstrates that slow oxidation of nanoparticles can give exquisite control and separation of homogeneous and inhomogeneous doping effects on the Verwey transition and offers opportunities for similar insights into complex electronic and magnetic phase transitions in other materials.

3.
Inorg Chem ; 60(11): 8027-8034, 2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-34010552

RESUMEN

The antiferromagnetic behavior of Fe3+ oxides of composition RE1.2Ba1.2Ca0.6Fe3O8, RE2.2Ba3.2Ca2.6Fe8O21, and REBa2Ca2Fe5O13 (RE = Gd, Tb) is highly influenced by the type of oxygen polyhedron around the Fe3+ cations and their ordering, which is coupled with the layered RE/Ba/Ca arrangement within the perovskite-related structure. Determination of the magnetic structures reveals different magnetic moments associated with Fe3+ spins in the different oxygen polyhedra (octahedron, tetrahedron, and square pyramid). The structural aspects impact on the strength of the Fe-O-Fe superexchange interactions and, therefore, on the Néel temperature (TN) of the compounds. The oxides present an interesting transition from three-dimensional (3D) to two-dimensional (2D) magnetic behavior above TN. The 2D magnetic interactions are stronger within the FeO6 octahedra layers than in the FeO4 tetrahedra layers.

4.
Nat Commun ; 8(1): 1217, 2017 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-29089516

RESUMEN

Transition-metal oxyhydrides are of considerable current interest due to the unique features of the hydride anion, most notably the absence of valence p orbitals. This feature distinguishes hydrides from all other anions, and gives rise to unprecedented properties in this new class of materials. Here we show via a high-pressure study of anion-ordered strontium vanadium oxyhydride SrVO2H that H- is extraordinarily compressible, and that pressure drives a transition from a Mott insulator to a metal at ~ 50 GPa. Density functional theory suggests that the band gap in the insulating state is reduced by pressure as a result of increased dispersion in the ab-plane due to enhanced Vdπ-Opπ-Vdπ overlap. Remarkably, dispersion along c is limited by the orthogonal Vdπ-H1s-Vdπ arrangement despite the greater c-axis compressibility, suggesting that the hydride anions act as π-blockers. The wider family of oxyhydrides may therefore give access to dimensionally reduced structures with novel electronic properties.

5.
Inorg Chem ; 55(17): 9012-6, 2016 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-27518124

RESUMEN

Topochemical reduction of the ordered double perovskite LaSrNiRuO6 with CaH2 yields LaSrNiRuO4, an extended oxide phase containing infinite sheets of apex-linked, square-planar Ni(1+)O4 and Ru(2+)O4 units ordered in a checkerboard arrangement. At room temperature the localized Ni(1+) (d(9), S = (1)/2) and Ru(2+) (d(6), S = 1) centers behave paramagnetically. However, on cooling below 250 K the system undergoes a cooperative phase transition in which the nickel spins align ferromagnetically, while the ruthenium cations appear to undergo a change in spin configuration to a diamagnetic spin state. Features of the low-temperature crystal structure suggest a symmetry lowering Jahn-Teller distortion could be responsible for the observed diamagnetism of the ruthenium centers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...