Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Genomics ; 22(1): 308, 2021 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-33910518

RESUMEN

BACKGROUND: We previously reported the results of CRISPR/Cas9 knock-out (KO) of type-I and type-III vitellogenins (Vtgs) in zebrafish, which provided the first experimental evidence on essentiality and disparate functioning of Vtgs at different stages during early development. However, the specific contributions of different types of Vtg to major cellular processes remained to be investigated. The present study employed liquid chromatography and tandem mass spectrometry (LC-MS/MS) to meet this deficit. Proteomic profiles of zebrafish eggs lacking three type-I Vtgs simultaneously (vtg1-KO), or lacking only type III Vtg (vtg3-KO) were compared to those of wild type (Wt) eggs. Obtained spectra were searched against a zebrafish proteome database and identified proteins were quantified based on normalized spectral counts. RESULTS: The vtg-KO caused severe changes in the proteome of 1-cell stage zebrafish eggs. These changes were disclosed by molecular signatures that highly resembled the proteomic phenotype of poor quality zebrafish eggs reported in our prior studies. Proteomic profiles of vtg-KO eggs and perturbations in abundances of hundreds of proteins revealed unique, noncompensable contributions of multiple Vtgs to protein and in energy homeostasis. The lack of this contribution appears to have a significant impact on endoplasmic reticulum and mitochondrial functions, and thus embryonic development, even after zygotic genome activation. Increased endoplasmic reticulum stress, Redox/Detox activities, glycolysis/gluconeogenesis, enrichment in cellular proliferation and in human neurodegenerative disease related activities in both vtg1- and vtg3-KO eggs were found to be indicators of the aforementioned conditions. Distinctive increase in apoptosis and Parkinson disease pathways, as well as the decrease in lipid metabolism related activities in vtg3-KO eggs implies compelling roles of Vtg3, the least abundant form of Vtgs in vertebrate eggs, in mitochondrial activities. Several differentially abundant proteins representing the altered molecular mechanisms have been identified as strong candidate markers for studying the details of these mechanisms during early embryonic development in zebrafish and possibly other vertebrates. CONCLUSIONS: These findings indicate that the global egg proteome is subject to extensive modification depending on the presence or absence of specific Vtgs and that these modifications can have a major impact on developmental competence.


Asunto(s)
Enfermedades Neurodegenerativas , Pez Cebra , Animales , Cromatografía Liquida , Humanos , Fenotipo , Proteómica , Espectrometría de Masas en Tándem , Vitelogeninas/genética , Pez Cebra/genética , Proteínas de Pez Cebra/genética
2.
Learn Behav ; 49(3): 292-306, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33409895

RESUMEN

Cognitive abilities were studied in rainbow trout, the first continental fish production in Europe. Increasing public concern for the welfare of farmed-fish species highlighted the need for better knowledge of the cognitive status of fish. We trained and tested 15 rainbow trout with an operant conditioning device composed of self-feeders positioned in front of visual stimuli displayed on a screen. The device was coupled with a two-alternative forced-choice (2-AFC) paradigm to test whether rainbow trout can discriminate 2-D photographs of conspecifics (S+) from different visual stimuli (S-). The S- were applied in four stages, the last three stages representing increasing discrimination difficulty: (1) blue shapes; (2) black shape (star); (3) photograph of an object (among a pool of 60); (4) photograph of another fish species (among a pool of 60). Nine fish (out of 15) correctly managed to activate the conditioning device after 30-150 trials. The rainbow trout were able to discriminate images of conspecifics from an abstract shape (five individuals out of five) or objects (four out of five) but not from other fish species. Their ability to learn the category "fish shape" rather than distinguishing between conspecifics and heterospecifics is discussed. The successful visual discrimination task using this complex operant conditioning device is particularly remarkable and novel for this farmed-fish species, and could be exploited to develop cognitive enrichments in future farming systems. This device can also be added to the existing repertoire of testing devices suitable for investigating cognitive abilities in fish.


Asunto(s)
Oncorhynchus mykiss , Animales , Condicionamiento Operante
3.
Mol Reprod Dev ; 86(9): 1168-1188, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31380595

RESUMEN

Oviparous vertebrates produce multiple forms of vitellogenin (Vtg), the major source of yolk nutrients, but little is known about their individual contributions to reproduction and development. This study utilized clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) genome editing to assess essentiality and functionality of zebrafish (Danio rerio) type-I and type-III Vtgs. A multiple CRISPR approach was employed to knockout (KO) all genes encoding type-I vtgs (vtg1, 4, 5, 6, and 7) simultaneously (vtg1-KO), and the type-III vtg (vtg3) individually (vtg3-KO). Results of polymerase chain reaction (PCR) genotyping and sequencing, quantitative PCR, liquid chromatography-tandem mass spectrometry, and Western blot analysis showed that only vtg6 and vtg7 escaped Cas9 editing. In fish whose remaining type-I vtgs were incapacitated (vtg1-KO), and in vtg3-KO fish, significant increases in Vtg7 transcript and protein levels occurred in liver and eggs, revealing a heretofore-unknown mechanism of genetic compensation regulating Vtg homeostasis. Egg numbers per spawn were elevated more than 2-fold in vtg1-KO females, and egg fertility was approximately halved in vtg3-KO females. Substantial mortality was evident in vtg3-KO eggs/embryos after only 8 hr of incubation and in vtg1-KO embryos after 5 days. Hatching rate and timing were markedly impaired in embryos from vtg mutant mothers and pericardial and yolk sac/abdominal edema and spinal lordosis were evident in the larvae, with feeding and motor activities also being absent in vtg1-KO larvae. By late larval stages, vtg mutations were either completely lethal (vtg1-KO) or nearly so (vtg3-KO). These novel findings offer the first experimental evidence that different types of vertebrate Vtg are essential and have disparate requisite functions at different times during both reproduction and development.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Técnicas de Silenciamiento del Gen , Vitelogeninas , Proteínas de Pez Cebra , Pez Cebra , Animales , Vitelogeninas/genética , Vitelogeninas/metabolismo , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
4.
BMC Genomics ; 20(1): 584, 2019 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-31307377

RESUMEN

BACKGROUND: Egg quality can be defined as the egg ability to be fertilized and subsequently develop into a normal embryo. Previous research has shed light on factors that can influence egg quality. Large gaps however remain including a comprehensive view of what makes a bad egg. Initial development of the embryo relies on maternally-inherited molecules, such as transcripts, deposited in the egg during its formation. Bad egg quality is therefore susceptible to be associated with alteration or dysregulation of maternally-inherited transcripts. We performed transcriptome analysis on a large number (N = 136) of zebrafish egg clutches, each clutch being split to monitor developmental success and perform transcriptome analysis in parallel. We aimed at drawing a molecular portrait of the egg in order to characterize the relation between egg transcriptome and developmental success and to subsequently identify new candidate genes involved in fertility. RESULTS: We identified 66 transcript that were differentially abundant in eggs of contrasted phenotype (low or high developmental success). Statistical modeling using partial least squares regression and genetics algorithm demonstrated that gene signatures from transcriptomic data can be used to predict developmental success. The identity and function of differentially expressed genes indicate a major dysregulation of genes of the translational machinery in poor quality eggs. Two genes, otulina and slc29a1a, predominantly expressed in the ovary and dysregulated in poor quality eggs were further investigated using CRISPR/Cas9 mediated genome editing. Mutants of each gene revealed remarkable subfertility whereby the majority of their eggs were unfertilizable. The Wnt pathway appeared to be dysregulated in the otulina mutant-derived eggs. CONCLUSIONS: Here we show that egg transcriptome contains molecular signatures, which can be used to predict developmental success. Our results also indicate that poor egg quality in zebrafish is associated with a dysregulation of (i) the translational machinery genes and (ii) novel fertility genes, otulina and slc29a1a, playing an important role for fertilization. Together, our observations highlight the diversity of the possible causes of egg quality defects and reveal mechanisms of maternal origin behind the lack of fertilization and early embryonic failures that can occur under normal reproduction conditions.


Asunto(s)
Fertilidad/genética , Regulación de la Expresión Génica , Óvulo/metabolismo , Biosíntesis de Proteínas , Animales , Femenino , Masculino , Reacción en Cadena en Tiempo Real de la Polimerasa , Transcriptoma , Vía de Señalización Wnt , Pez Cebra
5.
PeerJ ; 6: e5534, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30155373

RESUMEN

The family of forkhead box (Fox) transcription factors regulates gonadogenesis and embryogenesis, but the role of foxr1 in reproduction is unknown. Evolutionary history of foxr1 in vertebrates was examined and the gene was found to exist in most vertebrates, including mammals, ray-finned fish, amphibians, and sauropsids. By quantitative PCR and RNA-seq, we found that foxr1 had an ovarian-specific expression in zebrafish, a common feature of maternal-effect genes. In addition, it was demonstrated using in situ hybridization that foxr1 was a maternally-inherited transcript that was highly expressed even in early-stage oocytes and accumulated in the developing eggs during oogenesis. We also analyzed the function of foxr1 in female reproduction using a zebrafish CRISPR/cas9 knockout model. It was observed that embryos from the foxr1-deficient females had a significantly lower survival rate whereby they either failed to undergo cell division or underwent abnormal division that culminated in growth arrest at around the mid-blastula transition and early death. These mutant-derived eggs contained dramatically increased levels of p21, a cell cycle inhibitor, and reduced rictor, a component of mTOR and regulator of cell survival, which were in line with the observed growth arrest phenotype. Our study shows for the first time that foxr1 is an essential maternal-effect gene and may be required for proper cell division and survival via the p21 and mTOR pathways. These novel findings will broaden our knowledge on the functions of specific maternal factors stored in the developing egg and the underlying mechanisms that contribute to reproductive success.

6.
Fish Physiol Biochem ; 44(6): 1509-1525, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29882000

RESUMEN

Scrutiny of the zebrafish (Danio rerio) genomic database confirmed eight functional vitellogenin (vtg) genes, each with one or two transcript variants, and the encoded Vtg polypeptides were structurally and functionally characterized in detail by in silico and experimental analyses. There were five type I (vtgs1, 4, 5, 6, and 7), two type II (vtg2 and vtg8), and one type III (vtg3) vtg gene(s) encoding three major types of Vtg protein based on subdomain structure (Vtg-I, Vtg-II, and Vtg-III, respectively). Among various tissues of mature zebrafish, transcripts of the eight vtg genes were detected by RNA-Seq only in liver and intestine, with liver being the main site of vtg expression. All vtg transcripts except vtg8 were also detected in mature female liver by RT-qPCR. The relative abundances of Vtg proteins and their variants were quantified by LC-MS/MS in the liver of mature females and in eggs. The Vtgs were generally several fold more abundant in eggs, but profiles of abundance of the 19 different forms of Vtg evaluated were otherwise similar in liver and eggs, suggesting that yolk protein composition is determined largely by hepatic Vtg synthesis and secretion. Based on transcript and protein levels, Vtg-I is, by far, the dominant type of Vtg in zebrafish, followed by Vtg-II and then Vtg-III. When relative abundances of the different forms of Vtg were evaluated by LC-MS/MS in egg batches of good versus poor quality, no differences in the proportional abundance of individual forms of Vtg, or of different Vtg types, attributable to egg quality were observed.


Asunto(s)
Vitelogeninas/genética , Vitelogeninas/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo , Animales , Femenino , Expresión Génica , Hígado/metabolismo , Masculino , Familia de Multigenes , Óvulo/metabolismo , Dominios Proteicos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Distribución Tisular , Vitelogeninas/clasificación , Proteínas de Pez Cebra/clasificación
7.
PLoS One ; 12(11): e0188084, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29145436

RESUMEN

Egg quality is a complex biological trait and a major determinant of reproductive fitness in all animals. This study delivered the first proteomic portraits of egg quality in zebrafish, a leading biomedical model for early development. Egg batches of good and poor quality, evidenced by embryo survival for 24 h, were sampled immediately after spawning and used to create pooled or replicated sample sets whose protein extracts were subjected to different levels of fractionation before liquid chromatography and tandem mass spectrometry. Obtained spectra were searched against a zebrafish proteome database and detected proteins were annotated, categorized and quantified based on normalized spectral counts. Manually curated and automated enrichment analyses revealed poor quality eggs to be deficient of proteins involved in protein synthesis and energy and lipid metabolism, and of some vitellogenin products and lectins, and to have a surfeit of proteins involved in endo-lysosomal activities, autophagy, and apoptosis, and of some oncogene products, lectins and egg envelope proteins. Results of pathway and network analyses suggest that this aberrant proteomic profile results from failure of oocytes giving rise to poor quality eggs to properly transit through final maturation, and implicated Wnt signaling in the etiology of this defect. Quantitative comparisons of abundant proteins in good versus poor quality eggs revealed 17 candidate egg quality markers. Thus, the zebrafish egg proteome is clearly linked to embryo developmental potential, a phenomenon that begs further investigation to elucidate the root causes of poor egg quality, presently a serious and intractable problem in livestock and human reproductive medicine.


Asunto(s)
Biomarcadores/metabolismo , Óvulo/metabolismo , Proteómica , Pez Cebra/metabolismo , Animales , Cromatografía Liquida , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...