Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancers (Basel) ; 14(9)2022 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-35565240

RESUMEN

There is increasing evidence that oxidative metabolism and fatty acids play an important role in BRAF-driven tumorigenesis, yet the effect of BRAF mutation and expression on metabolism is poorly understood. We examined how BRAF mutation and expression modulates metabolite abundance. Using the non-transformed NIH3T3 cell line, we generated cells that stably overexpressed BRAF V600E or BRAF WT. We found that cells expressing BRAF V600E were enriched with immunomodulatory lipids. Further, we found a unique transcriptional signature that was exclusive to BRAF V600E expression. We also report that BRAF V600E mutation promoted accumulation of long chain polyunsaturated fatty acids (PUFAs) and rewired metabolic flux for non-Warburg behavior. This cancer promoting mutation further induced the formation of tunneling nanotube (TNT)-like protrusions in NIH3T3 cells that preferentially accumulated lipid droplets. In the plasma of melanoma patients harboring the BRAF V600E mutation, levels of lysophosphatidic acid, sphingomyelin, and long chain fatty acids were significantly increased in the cohort of patients that did not respond to BRAF inhibitor therapy. Our findings show BRAF V600 status plays an important role in regulating immunomodulatory lipid profiles and lipid trafficking, which may inform future therapy across cancers.

2.
J Oncol ; 2020: 1079827, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32411231

RESUMEN

Overactivation of the mitogen-activated protein kinase (MAPK) pathway is an important driver of many human cancers. First line, FDA-approved therapies targeting MAPK signalling, which include BRAF and MEK inhibitors, have variable success across cancers, and a significant number of patients quickly develop resistance. In recent years, a number of preclinical studies have reported alternative methods of overcoming resistance, which include promoting apoptosis, modulating autophagy, and targeting mitochondrial metabolism. This review summarizes mechanisms of resistance to approved MAPK-targeted therapies in BRAF-mutated cancers and discusses novel preclinical approaches to overcoming resistance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...