Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Reprod Domest Anim ; 59(6): e14617, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38837282

RESUMEN

Sub-estrus buffaloes do not exhibit estrus signs despite being cyclic contributing to extended service periods and inter-calving intervals causing significant economic loss. The present study described the effect of synthetic prostaglandin (PGF2α) on estrus behaviour, follicular and luteal morphometry, and serum estradiol (E2) and progesterone (P4) profile in sub-estrus buffaloes during the non-breeding season. The incidence of sub-estrus was 38.4% during the non-breeding season. The sub-estrus buffaloes (n = 33) were divided into two groups, viz., Control (n = 16) and PGF2α treatment (Inj. Cloprostenol 500 µg, i.m., n = 17). Estrus induction response was significantly greater in the treatment (100 vs. 18.75%, p < .001), and a relatively greater proportion of animals conceived in the treatment group (29.41 vs. 6.25%, p = .08). The time elapsed to induction of estrus and insemination following treatment was significantly lower in the treatment group than control. A significant increment in the follicle diameter (9.72 ± 0.45 vs. 13.00 ± 0.45 mm, P < .0001) and serum estradiol (E2) concentration (66.01 ± 11.92 vs. 104.9 ± 13.21 pg/mL, p = .003) observed at the post-treatment period in the PGF2α treatment group. At the same time, CL diameter was reduced significantly at a higher regression rate in the PGF2α treated buffaloes than those of control. Of the responded buffaloes, only 30% showed high-intensity estrus attributed to the expulsion of cervico-vaginal mucus (CVM), uterine tonicity, micturition, and mounting response by a teaser bull. From this study, it can be concluded that the administration of PGF2α could induce estrus in the sub-estrus buffaloes during the non-breeding season. Behavioural changes, along with sonographic observation of POF, regressing CL, and serum E2 and P4 concentration would be useful to determine the right time of insemination in sub-estrus buffaloes during non-breeding season.


Asunto(s)
Búfalos , Dinoprost , Estradiol , Sincronización del Estro , Estro , Folículo Ovárico , Progesterona , Animales , Femenino , Búfalos/fisiología , Estradiol/farmacología , Estradiol/sangre , Progesterona/sangre , Progesterona/farmacología , Estro/efectos de los fármacos , Folículo Ovárico/efectos de los fármacos , Dinoprost/farmacología , Dinoprost/administración & dosificación , Embarazo , Estaciones del Año , Cloprostenol/farmacología , Cloprostenol/administración & dosificación , Cuerpo Lúteo/efectos de los fármacos , Cuerpo Lúteo/fisiología , Inseminación Artificial/veterinaria , Conducta Sexual Animal/efectos de los fármacos
2.
Reprod Domest Anim ; 59(1): e14523, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38268209

RESUMEN

Kisspeptin (Kp), an upstream regulator of GnRH release, is essential for the development and function of reproductive axis. Previously, we demonstrated the localization of Kp and its receptor (Kiss1r) in the active follicle in the bubaline ovary. Present study aimed to determine the effect of Kp on granulosa cell (GCs) functions, especially oestradiol (E2 ) and progesterone (P4 ) production, and differential expression of genes regulating the proliferation, apoptosis and steroidogenesis in the buffalo. The ovaries with 6-10 mm size follicles obtained from the cyclic buffaloes after slaughtering were used for isolation of GCs for in vitro study. The primary GCs culture was treated with Kp (0, 10, 50 and 100 nM) and incubated for 48 h. Production of E2 and P4 was estimated in the culture supernatant by ELISA. The expression of gonadotropin receptors (FSHR and LHR), steroidogenic genes (STAR, 3ß-HSD, CYP19A1), proliferation marker (PCNA), apoptotic factors (CASP3 and BCL2) and Kp signalling molecule (extracellular signal-regulated kinase 1/2, ERK1/2 and p-ERK1/2) was studied in the GCs by qPCR. Significant E2 production was found in the Kp 50 and 100 nM groups (p < .05), whereas P4 production was reduced in Kp 100 nM group (p < .05). There was concomitant upregulation of FSHR, ERK1/2, STAR and CYP19A1 in the Kp 100 nM treated GCs. In addition, Kp at 100 nM stimulated the proliferation of GCs by upregulating the expression of BCL2 (5.0 fold) and PCNA (94.9 fold). Further, high immunoreactivity of p-ERK1/2 was observed in the Kp-treated GCs. It was concluded that Kp at 100 nM concentration stimulated E2 production by upregulating the steroidogenic pathway through ERK1/2, STAR and CYP19A1 and modulating PCNA and BCL2 expressions in the GCs. Further experiments are warranted using Kp antagonist in different combinations to establish the signalling pathway in Kp-mediated steroidogenesis in the GCs for developing strategies to control ovarian functions.


Asunto(s)
Bison , Estradiol , Animales , Femenino , Kisspeptinas/genética , Antígeno Nuclear de Célula en Proliferación , Células de la Granulosa , Proliferación Celular , Proteínas Proto-Oncogénicas c-bcl-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA