Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Anal Chem ; 96(11): 4343-4358, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38452774

RESUMEN

Microplastics are increasingly reported, not only in the environment but also in a wide range of food commodities. While studies on microplastics in food abound, the current state of science is limited in its application to regulatory risk assessment by a continued lack of standardized definitions, reference materials, sample collection and preparation procedures, fit-for purpose analytical methods for real-world and environmentally relevant plastic mixtures, and appropriate quality controls. This is particularly the case for nanoplastics. These methodological challenges hinder robust, quantitative exposure assessments of microplastic and nanoplastic mixtures from food consumption. Furthermore, limited toxicological studies on whether microplastics and nanoplastics adversely impact human health are also impeded by methodology challenges. Food safety regulatory agencies must consider both the exposure and the risk of contaminants of emerging concern to ascertain potential harm. Foundational to this effort is access to and application of analytical methods with the capability to quantify and characterize micro- and nanoscale sized polymers in complex food matrices. However, the early stages of method development and application of early stage methods to study the distribution and potential health effects of microplastics and nanoplastics in food have largely been done without consideration of the stringent requirements of methods to inform regulatory activities. We provide regulatory science perspectives on the state of knowledge regarding the occurrence of microplastics and nanoplastics in food and present our general approach for developing, validating, and implementing analytical methods for regulatory purposes.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Humanos , Plásticos/análisis , Contaminantes Químicos del Agua/análisis , Inocuidad de los Alimentos
2.
NanoImpact ; 30: 100467, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37196807

RESUMEN

Environmental contamination by micro- and nanoplastics (MNPs) is well documented with potential for their increased accumulation globally. Growing public concern over environmental, ecological, and human exposure to MNPs has led to exponential increase in publications, news articles, and reports (Casillas et al., 2023). Significant knowledge gap exists in standardized analytical methods for the identification and quantification of MNPs from real world environmental samples. Here, we report comprehensive datasets utilizing thermogravimetric analyzer (TGA) coupled to a Fourier transformed infrared spectrometer (FTIR) and a gas chromatography/mass spectrometer (GC/MS) with corresponding Raman spectral data for the most common polymers documented to be present in the environment (35 plastics of 12 polymer types), to serve as a base line reference for the identification and quantitation of MNPs. Various parameters for TGA-FTIR-GC/MS data acquisition were optimized. Commercial consumer plastic product compositions were identified using this analytical database. Case studies to showcase the utility of the method for polymer mixtures analysis is included. This dataset would serve towards the development of a collaborative, global, comprehensive, and curated public database for the identification of various MNPs and mixtures.


Asunto(s)
Microplásticos , Polímeros , Humanos , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Espectrometría Raman , Monitoreo del Ambiente/métodos , Plásticos/análisis , Cromatografía de Gases
3.
Nanotoxicology ; 17(1): 116-142, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-37000602

RESUMEN

Particulate and soluble debris are generated by mechanical and non-mechanical degradation of implanted medical devices. Debris containing cobalt and chromium (CoCr) is known to cause adverse biological reactions. Implant-related complications are often diagnosed using radiography, which results in more frequent patient exposure to ionizing radiation. The aim of this study was to evaluate the potential for increased toxicity due to combined radiation and CoCr exposure. This was investigated using a controlled in vitro model consisting of commercially available CoCr debris that was generated from components of hip replacements and human cell lines relevant to the joint environment: endothelial HMEC-1 and synovial SW982. Particle sizes and shapes were heterogenous. Cells tended to internalize smaller particles, as observed by electron microscopy. Indicators of toxicity were measured after short (24 h after radiation) or extended (12-14 d after radiation) exposure timelines. In the short-term, CoCr reduced cell viability, increased apoptosis, and increased oxidative stress. The effects of radiation were not apparent until the timeline was extended. CoCr and radiation reduced cell survival, with both additive and synergistic effects. Mechanisms for reduced survival included rapid cell death caused by CoCr and senescence caused by radiation. In conclusion, results showed combined toxicological effects of CoCr and radiation at the doses and timelines used for this in vitro model. These observations warrant further investigation using other experimental models to determine translational impact.


Asunto(s)
Aleaciones de Cromo , Cobalto , Humanos , Aleaciones de Cromo/toxicidad , Cobalto/toxicidad , Cromo/toxicidad , Prótesis e Implantes , Tamaño de la Partícula
4.
J Magn Reson Imaging ; 56(5): 1499-1504, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35278003

RESUMEN

BACKGROUND: Currently, the gadolinium retention in the brain after the use of contrast agents is studied by T1 -weighted magnetic resonance imaging (MRI) (T1 w) and T1 mapping. The former does not provide easily quantifiable data and the latter requires prolonged scanning and is sensitive to motion. T2 mapping may provide an alternative approach. Animal studies of gadolinium retention are complicated by repeated intravenous (IV) dosing, whereas intraperitoneal (IP) injections might be sufficient. HYPOTHESIS: T2 mapping will detect the changes in the rat brain due to gadolinium retention, and IP administration is equivalent to IV for long-term studies. STUDY TYPE: Prospective longitudinal. ANIMAL MODEL: A total of 31 Sprague-Dawley rats administered gadodiamide IV (N = 8) or IP (N = 8), or saline IV (N = 6) or IP (N = 9) 4 days per week for 5 weeks. FIELD STRENGTH/SEQUENCES: A 7 T, T1 w, and T2 mapping. ASSESSMENT: T2 relaxation and image intensities in the deep cerebellar nuclei were measured pre-treatment and weekly for 5 weeks. Then brains were assessed for neuropathology (N = 4) or gadolinium content using inductively coupled plasma mass spectrometry (ICP-MS, N = 12). STATISTICAL TESTS: Repeated measures analysis of variance with post hoc Student-Newman-Keuls tests and Hedges' effect size. RESULTS: Gadolinium was detected by both approaches; however, T2 mapping was more sensitive (effect size 2.32 for T2 vs. 0.95 for T1 w), and earlier detection (week 3 for T2 vs. week 4 for T1 w). ICP-MS confirmed the presence of gadolinium (3.076 ± 0.909 nmol/g in the IV group and 3.948 ± 0.806 nmol/g in the IP group). There was no significant difference between IP and IV groups (ICP-MS, P = 0.109; MRI, P = 0.696). No histopathological abnormalities were detected in any studied animal. CONCLUSION: T2 relaxometry detects gadolinium retention in the rat brain after multiple doses of gadodiamide irrespective of the route of administration. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 1.


Asunto(s)
Medios de Contraste , Compuestos Organometálicos , Animales , Encéfalo/diagnóstico por imagen , Gadolinio/farmacología , Gadolinio DTPA , Imagen por Resonancia Magnética/métodos , Estudios Prospectivos , Ratas , Ratas Sprague-Dawley
5.
ALTEX ; 39(2): 183­206, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34874455

RESUMEN

Engineered nanomaterials (ENMs) come in a wide array of shapes, sizes, surface coatings, and compositions, and often possess novel or enhanced properties compared to larger sized particles of the same elemental composition. To ensure the safe commercialization of products containing ENMs, it is important to thoroughly understand their potential risks. Given that ENMs can be created in an almost infinite number of variations, it is not feasible to conduct in vivo testing on each type of ENM. Instead, new approach methodologies (NAMs) such as in vitro or in chemico test methods may be needed, given their capacity for higher throughput testing, lower cost, and ability to provide information on toxicological mechanisms. However, the different behaviors of ENMs compared to dissolved chemicals may challenge safety testing of ENMs using NAMs. In this study, member agencies within the Interagency Coordinating Committee on the Validation of Alternative Methods were queried about what types of ENMs are of agency interest and whether there is agency-specific guidance for ENM toxicity testing. To support the ability of NAMs to provide robust results in ENM testing, two key issues in the usage of NAMs, namely dosimetry and interference/bias controls, are thoroughly discussed.


Asunto(s)
Alternativas a las Pruebas en Animales , Nanoestructuras , Animales , Nanoestructuras/química , Nanoestructuras/toxicidad , Pruebas de Toxicidad/métodos
6.
J Am Chem Soc ; 142(12): 5526-5530, 2020 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-32131597

RESUMEN

Planar, terpyridine-based metal complexes with the Sierpinski triangular motif and alkylated corners undergo a second self-assembly event to give megastructural Sierpinski pyramids; assembly is driven by the facile lipophilic-lipophilic association of the alkyl moieties and complementary perfect fit of the triangular building blocks. Confirmation of the 3D, pyramidal structures was verified and supported by a combination of TEM, AFM, and multiscale simulation techniques.

7.
Nanotoxicology ; 14(4): 534-553, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32031460

RESUMEN

Nanoscale titanium dioxide (TiO2) is manufactured in wide scale, with a range of applications in consumer products. Significant toxicity of TiO2 nanoparticles has, however, been recognized, suggesting considerable risk to human health. To evaluate fully their toxicity, assessment of the epigenetic action of these nanoparticles is critical. However, only few studies are available examining capability of nanoparticles to alter epigenetic integrity. In the present study, the effect of TiO2 nanoparticles exposure on DNA methylation, a major epigenetic mechanism, was investigated in in vitro cellular model systems. A panel of cells relevant to portals of human exposure (Caco-2 (colorectal), HepG2 (liver), NL20 (lung), and A-431 (skin)) was exposed to TiO2 nanoparticles to assess effects on global methylation, gene-specific methylation, and expression levels of DNA methyltransferases, MBD2, and UHRF1. Global methylation was determined by enzyme-linked immunosorbent assay-based immunochemical analysis. Degree of promoter methylation across a defined panel of genes was evaluated using EpiTect Methyl II Signature PCR System Array technology. Expression of DNMT1, DNMT3a, DNMT3b, MBD2, and URHF1 was quantified by qRT-PCR. Decrease in global DNA methylation in cell lines Caco-2, HepG2, and A-431 exposed to TiO2 nanoparticles was shown. Across four cell lines, eight genes (CDKN1A, DNAJC15, GADD45A, GDF15, INSIG1, SCARA3, TP53, and BNIP3) were identified in which promotors were methylated after exposure. Altered expression of these genes is associated with disease etiology. The results also revealed aberrant expression of epigenetic regulatory genes involved in DNA methylation (DNMT1, DNMT3a, DNMT3b, MBD2, and UHRF1) in TiO2 exposed cells, which was cell type dependent. Findings from this study clearly demonstrate the impact of TiO2 nanoparticles exposure on DNA methylation in multiple cell types, supporting potential involvement of this epigenetic mechanism in the toxicity of TiO2 nanoparticles. Hence for complete assessment of potential risk from nanoparticle exposure, epigenetic studies are critical.


Asunto(s)
Metilación de ADN/efectos de los fármacos , Epigénesis Genética/efectos de los fármacos , Nanopartículas/toxicidad , Titanio/toxicidad , Proteínas Potenciadoras de Unión a CCAAT/genética , Línea Celular Tumoral , ADN (Citosina-5-)-Metiltransferasas/genética , Expresión Génica/efectos de los fármacos , Proteínas del Choque Térmico HSP40/genética , Humanos , Regiones Promotoras Genéticas , Ubiquitina-Proteína Ligasas/genética , ADN Metiltransferasa 3B
8.
Nanomaterials (Basel) ; 8(1)2018 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-29303999

RESUMEN

The objective of this study was to evaluate physicochemical equivalence between brand (i.e., Ferrlecit) and generic sodium ferric gluconate (SFG) in sucrose injection by conducting a series of comparative in vitro characterizations using advanced analytical techniques. The elemental iron and carbon content, thermal properties, viscosity, particle size, zeta potential, sedimentation coefficient, and molecular weight were determined. There was no noticeable difference between brand and generic SFG in sucrose injection for the above physical parameters evaluated, except for the sedimentation coefficient determined by sedimentation velocity analytical ultracentrifugation (SV-AUC) and molecular weight by asymmetric field flow fractionation-multi-angle light scattering (AFFF-MALS). In addition, brand and generic SFG complex products showed comparable molecular weight distributions when determined by gel permeation chromatography (GPC). The observed minor differences between brand and generic SFG, such as sedimentation coefficient, do not impact their biological activities in separate studies of in vitro cellular uptake and rat biodistribution. Coupled with the ongoing clinical study comparing the labile iron level in healthy volunteers, the FDA-funded post-market studies intended to illustrate comprehensive surveillance efforts ensuring safety and efficacy profiles of generic SFG complex in sucrose injection, and also to shed new light on the approval standards on generic parenteral iron colloidal products.

9.
Nanomedicine (Lond) ; 12(17): 2097-2111, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28805153

RESUMEN

AIM: The goal of this study was to determine whether bacterial clearance in a rodent model would be impaired upon exposure to gold, silver or silica nanoparticles (NPs). MATERIALS & METHODS: Mice received weekly injections of NPs followed by a challenge of Listeria monocytogenes (LM). On days 3 and 10 after LM injections, the animals were sacrificed and their tissues were collected for elemental analysis, electron microscopy and LM count determination. RESULTS: The untreated and NP-treated animals cleared LM at the same rate suggesting that bioaccumulation of NPs did not increase the animals' susceptibility to bacterial infection. CONCLUSION: The data from this study indicate that the bioaccumulation of NPs does not significantly affect the ability to react to a bacterial challenge.


Asunto(s)
Listeria monocytogenes/efectos de los fármacos , Listeriosis/tratamiento farmacológico , Nanopartículas/química , Administración Intravenosa , Animales , Supervivencia Celular , Femenino , Oro/química , Humanos , Listeriosis/metabolismo , Listeriosis/microbiología , Macrófagos/citología , Macrófagos/efectos de los fármacos , Ratones , Ratones Endogámicos BALB C , Tamaño de la Partícula , Células RAW 264.7 , Especies Reactivas de Oxígeno/metabolismo , Dióxido de Silicio/química , Plata/química , Propiedades de Superficie , Distribución Tisular
11.
Nanomedicine ; 10(7): 1453-63, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24512761

RESUMEN

Proteins bound to nanoparticle surfaces are known to affect particle clearance by influencing immune cell uptake and distribution to the organs of the mononuclear phagocytic system. The composition of the protein corona has been described for several types of nanomaterials, but the role of the corona in nanoparticle biocompatibility is not well established. In this study we investigate the role of nanoparticle surface properties (PEGylation) and incubation times on the protein coronas of colloidal gold nanoparticles. While neither incubation time nor PEG molecular weight affected the specific proteins in the protein corona, the total amount of protein binding was governed by the molecular weight of PEG coating. Furthermore, the composition of the protein corona did not correlate with nanoparticle hematocompatibility. Specialized hematological tests should be used to deduce nanoparticle hematotoxicity. From the clinical editor: It is overall unclear how the protein corona associated with colloidal gold nanoparticles may influence hematotoxicity. This study warns that PEGylation itself may be insufficient, because composition of the protein corona does not directly correlate with nanoparticle hematocompatibility. The authors suggest that specialized hematological tests must be used to deduce nanoparticle hematotoxicity.


Asunto(s)
Coloides , Oro/química , Nanopartículas del Metal , Proteínas/química , Coagulación Sanguínea , Proteínas del Sistema Complemento , Humanos , Polietilenglicoles/química , Unión Proteica
12.
Nanomedicine (Lond) ; 9(9): 1311-26, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24279459

RESUMEN

AIM: Disseminated intravascular coagulation is an increasing concern for certain types of engineered nanomaterials. Recent studies have shed some light on the nanoparticle physicochemical properties contributing to this toxicity; however, the mechanisms are poorly understood. Leukocyte procoagulant activity (PCA) is a key factor contributing to the initiation of this toxicity. We have previously reported on the exaggeration of endotoxin-induced PCA by cationic dendrimers. Herein, we report an effort to discern the mechanism. MATERIALS & METHODS: Poly(amidoamine) dendrimers with various sizes and surface functionalities were studied in vitro by the recalcification test, flow cytometry and other relevant assays. RESULTS & CONCLUSION: Cationic dendrimers exaggerated endotoxin-induced PCA, but their anionic or neutral counterparts did not; the cationic charge prompts this phenomenon, but different cationic surface chemistries do not influence it. Cationic dendrimers and endotoxin differentially affect the PCA complex. The inhibition of phosphoinositol 3 kinase by dendrimers contributes to the exaggeration of the endotoxin-induced PCA.


Asunto(s)
Factores de Coagulación Sanguínea/biosíntesis , Endotoxinas/toxicidad , Nanopartículas/química , Nanopartículas/toxicidad , Inhibidores de las Quinasa Fosfoinosítidos-3 , Cationes/química , Cationes/toxicidad , Dendrímeros/química , Dendrímeros/toxicidad , Coagulación Intravascular Diseminada/etiología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/toxicidad , Humanos , Técnicas In Vitro , Leucocitos/efectos de los fármacos , Leucocitos/metabolismo , Lipopolisacáridos/toxicidad , Poliaminas/química , Poliaminas/toxicidad
13.
Artículo en Inglés | MEDLINE | ID: mdl-24339356

RESUMEN

Imaging has become a cornerstone for medical diagnosis and the guidance of patient management. A new field called image-guided drug delivery (IGDD) now combines the vast potential of the radiological sciences with the delivery of treatment and promises to fulfill the vision of personalized medicine. Whether imaging is used to deliver focused energy to drug-laden particles for enhanced, local drug release around tumors, or it is invoked in the context of nanoparticle-based agents to quantify distinctive biomarkers that could risk stratify patients for improved targeted drug delivery efficiency, the overarching goal of IGDD is to use imaging to maximize effective therapy in diseased tissues and to minimize systemic drug exposure in order to reduce toxicities. Over the last several years, innumerable reports and reviews covering the gamut of IGDD technologies have been published, but inadequate attention has been directed toward identifying and addressing the barriers limiting clinical translation. In this consensus opinion, the opportunities and challenges impacting the clinical realization of IGDD-based personalized medicine were discussed as a panel and recommendations were proffered to accelerate the field forward.


Asunto(s)
Sistemas de Liberación de Medicamentos , Imagen Molecular , Nanomedicina , Medicina de Precisión , Animales , Humanos , Ratones
14.
Science ; 342(6161): 967-70, 2013 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-24264989

RESUMEN

The gut microbiota influences both local and systemic inflammation. Inflammation contributes to development, progression, and treatment of cancer, but it remains unclear whether commensal bacteria affect inflammation in the sterile tumor microenvironment. Here, we show that disruption of the microbiota impairs the response of subcutaneous tumors to CpG-oligonucleotide immunotherapy and platinum chemotherapy. In antibiotics-treated or germ-free mice, tumor-infiltrating myeloid-derived cells responded poorly to therapy, resulting in lower cytokine production and tumor necrosis after CpG-oligonucleotide treatment and deficient production of reactive oxygen species and cytotoxicity after chemotherapy. Thus, optimal responses to cancer therapy require an intact commensal microbiota that mediates its effects by modulating myeloid-derived cell functions in the tumor microenvironment. These findings underscore the importance of the microbiota in the outcome of disease treatment.


Asunto(s)
Intestinos/microbiología , Microbiota/fisiología , Neoplasias/inmunología , Neoplasias/terapia , Microambiente Tumoral/inmunología , Animales , Antibacterianos/administración & dosificación , Presentación de Antígeno/genética , Antineoplásicos/uso terapéutico , Bacterias/efectos de los fármacos , Fenómenos Fisiológicos Bacterianos/efectos de los fármacos , Regulación hacia Abajo , Regulación de la Expresión Génica , Vida Libre de Gérmenes , Inmunoterapia , Inflamación/genética , Melanoma Experimental , Ratones , Ratones Endogámicos C57BL , Microbiota/efectos de los fármacos , Trasplante de Neoplasias , Neoplasias/microbiología , Oligodesoxirribonucleótidos/uso terapéutico , Compuestos Organoplatinos/uso terapéutico , Oxaliplatino , Fagocitosis/genética , Especies Reactivas de Oxígeno/metabolismo , Simbiosis , Factor de Necrosis Tumoral alfa/metabolismo
15.
Invest Radiol ; 48(11): 745-54, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23748228

RESUMEN

OBJECTIVE: Macromolecular contrast agents for magnetic resonance imaging (MRI) are useful blood-pool agents because of their long systemic half-life and have found applications in monitoring tumor vasculature and angiogenesis. Macromolecular contrast agents have been able to overcome some of the disadvantages of the conventional small-molecule contrast agent Magnevist (gadolinium-diethylenetriaminepentaacetic acid), such as rapid extravasation and quick renal clearance, which limits the viable MRI time. There is an urgent need for new MRI contrast agents that increase the sensitivity of detection with a higher relaxivity, longer blood half-life, and reduced toxicity from free Gd3+ ions. Here, we report on the characterization of a novel water-soluble, derivatized, gadolinium-enclosed metallofullerene nanoparticle (Hydrochalarone-1) in development as an MRI contrast agent. MATERIALS AND METHODS: The physicochemical properties of Hydrochalarone-1 were characterized by dynamic light scattering (hydrodynamic diameter), atomic force microscopy (particle height), ζ potential analysis (surface charge), and inductively coupled plasma-mass spectrometry (gadolinium concentration). The blood compatibility of Hydrochalarone-1 was also assessed in vitro through analysis of hemolysis, platelet aggregation, and complement activation of human blood. In vitro relaxivities, in vivo pharmacokinetics, and a pilot in vivo acute toxicity study were also performed. RESULTS: An extensive in vitro and in vivo characterization of Hydrochalarone-1 is described here. The hydrodynamic size of Hydrochalarone-1 was 5 to 7 nm depending on the dispersing media, and it was negatively charged at physiological pH. Hydrochalarone-1 showed compatibility with blood cells in vitro, and no significant hemolysis, platelet aggregation, or complement activation was observed in vitro. In addition, Hydrochalarone-1 had significantly higher r1 and r2 in vitro relaxivities in human plasma in comparison with Magnevist and was not toxic at the doses administered in an in vivo pilot acute-dose toxicity study in mice.In vivo MRI pharmacokinetic analysis after a single intravenous injection of Hydrochalarone-1 (0.2 mmol Gd/kg) showed that the volume of distribution at steady state was approximately 100 mL/kg, suggesting prolonged systemic circulation. Hydrochalarone-1 also had a long blood half-life (88 minutes) and increased relaxivity, suggesting application as a promising blood-pool MRI contrast agent. CONCLUSIONS: The evidence suggests that Hydrochalarone-1, with its long systemic half-life, may have significant utility as a blood-pool MRI contrast agent.


Asunto(s)
Medios de Contraste/química , Fulerenos/química , Gadolinio/química , Imagen por Resonancia Magnética , Compuestos Organometálicos/química , Compuestos Organometálicos/farmacocinética , Animales , Activación de Complemento , Medios de Contraste/farmacocinética , Medios de Contraste/toxicidad , Fulerenos/farmacocinética , Fulerenos/toxicidad , Gadolinio/farmacocinética , Gadolinio/toxicidad , Hemólisis , Humanos , Sustancias Macromoleculares , Ratones , Microscopía de Fuerza Atómica , Simulación de Dinámica Molecular , Nanopartículas , Compuestos Organometálicos/toxicidad , Agregación Plaquetaria , Espectrofotometría Atómica
16.
Nanomedicine (Lond) ; 8(2): 299-308, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23394158

RESUMEN

Biotargeted nanomedicines have captured the attention of academic and industrial scientists who have been motivated by the theoretical possibilities of the 'magic bullet' that was first conceptualized by Paul Ehrlich at the beginning of the 20th century. The Biotargeting Working Group, consisting of more than 50 pharmaceutical scientists, engineers, biologists and clinicians, has been formed as part of the National Cancer Institute's Alliance for Nanotechnology in Cancer to harness collective wisdom in order to tackle conceptual and practical challenges in developing biotargeted nanomedicines for cancer. In modern science and medicine, it is impossible for any individual to be an expert in every aspect of biology, chemistry, materials science, pharmaceutics, toxicology, chemical engineering, imaging, physiology, oncology and regulatory affairs. Drawing on the expertise of leaders from each of these disciplines, this commentary highlights six tenets of biotargeted cancer nanomedicines in order to enable the translation of basic science into clinical practice.


Asunto(s)
Nanomedicina/métodos , Neoplasias , Animales , Humanos
17.
Integr Biol (Camb) ; 5(1): 66-73, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22772974

RESUMEN

The Nanotechnology Characterization Laboratory's (NCL) unique set-up has allowed our lab to handle and test a variety of nanoparticle platforms intended for the delivery of cancer therapeutics and/or imaging contrast agents. Over the last six years, the NCL has characterized more than 250 different nanomaterials from more than 75 different investigators. These submitted nanomaterials stem from a range of backgrounds and experiences, including government, academia and industry. This has given the NCL a unique and valuable opportunity to observe trends in nanoparticle safety and biocompatibility, as well as note some of the common mistakes and oversights of nanoformulation. While not exhaustive, this article aims to share some of the most common pitfalls observed by the NCL as they relate to nanoparticle synthesis, purification, characterization and analysis.


Asunto(s)
Nanomedicina/tendencias , Neoplasias/diagnóstico , Neoplasias/tratamiento farmacológico , Animales , Humanos , Ensayo de Materiales , Nanopartículas/uso terapéutico , Nanopartículas/toxicidad , National Cancer Institute (U.S.) , Estados Unidos
18.
J Control Release ; 164(2): 236-46, 2012 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-23064314

RESUMEN

Nanomedicine-based approaches to cancer treatment face several challenges that differ from those encountered by conventional medicines during clinical development. A systematic exploration of these issues has led us to identify the following needs and opportunities for further development: (1) robust and general methods for the accurate characterization of nanoparticle size, shape, and composition; (2) scalable approaches for producing nanomedicines with optimized bioavailability and excretion profiles; (3) particle engineering for maintaining low levels of nonspecific cytotoxicity and sufficient stability during storage; (4) optimization of surface chemistries for maximum targeted delivery and minimum nonspecific adsorption; (5) practical methods for quantifying ligand density and distributions on multivalent nanocarriers; and (6) the design of multifunctional nanomedicines for novel combination therapies with supportable levels of bioaccumulation.


Asunto(s)
Portadores de Fármacos/química , Nanopartículas/química , Adsorción , Animales , Humanos , Nanomedicina
19.
Clin Cancer Res ; 18(12): 3229-41, 2012 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-22669131

RESUMEN

Historically, treatment of patients with cancer using chemotherapeutic agents has been associated with debilitating and systemic toxicities, poor bioavailability, and unfavorable pharmacokinetics. Nanotechnology-based drug delivery systems, on the other hand, can specifically target cancer cells while avoiding their healthy neighbors, avoid rapid clearance from the body, and be administered without toxic solvents. They hold immense potential in addressing all of these issues, which has hampered further development of chemotherapeutics. Furthermore, such drug delivery systems will lead to cancer therapeutic modalities that are not only less toxic to the patient but also significantly more efficacious. In addition to established therapeutic modes of action, nanomaterials are opening up entirely new modalities of cancer therapy, such as photodynamic and hyperthermia treatments. Furthermore, nanoparticle carriers are also capable of addressing several drug delivery problems that could not be effectively solved in the past and include overcoming formulation issues, multidrug-resistance phenomenon, and penetrating cellular barriers that may limit device accessibility to intended targets, such as the blood-brain barrier. The challenges in optimizing design of nanoparticles tailored to specific tumor indications still remain; however, it is clear that nanoscale devices carry a significant promise toward new ways of diagnosing and treating cancer. This review focuses on future prospects of using nanotechnology in cancer applications and discusses practices and methodologies used in the development and translation of nanotechnology-based therapeutics.


Asunto(s)
Antineoplásicos/administración & dosificación , Antineoplásicos/uso terapéutico , Sistemas de Liberación de Medicamentos/métodos , Nanopartículas , Neoplasias/tratamiento farmacológico , Antineoplásicos/farmacocinética , Barrera Hematoencefálica , Descubrimiento de Drogas , Humanos , Nanotecnología , National Cancer Institute (U.S.) , Neoplasias/terapia , Distribución Tisular , Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...