Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 114(47): E10234-E10243, 2017 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-29109270

RESUMEN

Alterations in synaptic input, persisting for hours to days, elicit homeostatic plastic changes in the axon initial segment (AIS), which is pivotal for spike generation. Here, in hippocampal pyramidal neurons of both primary cultures and slices, we triggered a unique form of AIS plasticity by selectively targeting M-type K+ channels, which predominantly localize to the AIS and are essential for tuning neuronal excitability. While acute M-current inhibition via cholinergic activation or direct channel block made neurons more excitable, minutes to hours of sustained M-current depression resulted in a gradual reduction in intrinsic excitability. Dual soma-axon patch-clamp recordings combined with axonal Na+ imaging and immunocytochemistry revealed that these compensatory alterations were associated with a distal shift of the spike trigger zone and distal relocation of FGF14, Na+, and Kv7 channels but not ankyrin G. The concomitant distal redistribution of FGF14 together with Nav and Kv7 segments along the AIS suggests that these channels relocate as a structural and functional unit. These fast homeostatic changes were independent of l-type Ca2+ channel activity but were contingent on the crucial AIS protein, protein kinase CK2. Using compartmental simulations, we examined the effects of varying the AIS position relative to the soma and found that AIS distal relocation of both Nav and Kv7 channels elicited a decrease in neuronal excitability. Thus, alterations in M-channel activity rapidly trigger unique AIS plasticity to stabilize network excitability.


Asunto(s)
Segmento Inicial del Axón/fisiología , Quinasa de la Caseína II/metabolismo , Canal de Potasio KCNQ1/fisiología , Plasticidad Neuronal , Células Piramidales/fisiología , Potenciales de Acción , Animales , Región CA1 Hipocampal/citología , Región CA1 Hipocampal/fisiología , Células Cultivadas , Ratones , Ratones Endogámicos BALB C , Modelos Neurológicos , Técnicas de Placa-Clamp , Cultivo Primario de Células , Imagen de Colorante Sensible al Voltaje
2.
Sci Rep ; 6: 19106, 2016 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-26742695

RESUMEN

Maternal immune activation (MIA) resulting from prenatal exposure to infectious pathogens or inflammatory stimuli is increasingly recognized to play an important etiological role in neuropsychiatric disorders with neurodevelopmental features. MIA in pregnant rodents induced by injection of the synthetic double-stranded RNA, Poly I:C, a mimic of viral infection, leads to a wide spectrum of behavioral abnormalities as well as structural and functional defects in the brain. Previous MIA studies using poly I:C prenatal treatment suggested that neurophysiological alterations occur in the hippocampus. However, these investigations used only juvenile or adult animals. We postulated that MIA-induced alterations could occur earlier at neonatal/early postnatal stages. Here we examined the neurophysiological properties of cultured pyramidal-like hippocampal neurons prepared from neonatal (P0-P2) offspring of pregnant rats injected with poly I:C. Offspring neurons from poly I:C-treated mothers exhibited significantly lower intrinsic excitability and stronger spike frequency adaptation, compared to saline. A similar lower intrinsic excitability was observed in CA1 pyramidal neurons from hippocampal slices of two weeks-old poly I:C offspring. Cultured hippocampal neurons also displayed lower frequency of spontaneous firing, higher charge transfer of IPSCs and larger amplitude of miniature IPSCs. Thus, maternal immune activation leads to strikingly early neurophysiological abnormalities in hippocampal neurons.


Asunto(s)
Antígenos Virales/farmacología , Hipocampo/efectos de los fármacos , Inmunidad Innata/efectos de los fármacos , Poli I-C/farmacología , Células Piramidales/efectos de los fármacos , Potenciales de Acción/efectos de los fármacos , Animales , Animales Recién Nacidos , Conducta Animal/efectos de los fármacos , Femenino , Hipocampo/inmunología , Hipocampo/patología , Embarazo , Efectos Tardíos de la Exposición Prenatal/inmunología , Efectos Tardíos de la Exposición Prenatal/patología , Cultivo Primario de Células , Células Piramidales/inmunología , Células Piramidales/patología , Ratas
3.
Brain Behav Immun ; 51: 240-251, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26327125

RESUMEN

Schizophrenia is associated with behavioral and brain structural abnormalities, of which the hippocampus appears to be one of the most consistent region affected. Previous studies performed on the poly I:C model of schizophrenia suggest that alterations in hippocampal synaptic transmission and plasticity take place in the offspring. However, these investigations yielded conflicting results and the neurophysiological alterations responsible for these deficits are still unclear. Here we performed for the first time a longitudinal study examining the impact of prenatal poly I:C treatment and of gender on hippocampal excitatory neurotransmission. In addition, we examined the potential preventive/curative effects of risperidone (RIS) treatment during the peri-adolescence period. Excitatory synaptic transmission was determined by stimulating Schaffer collaterals and monitoring fiber volley amplitude and slope of field-EPSP (fEPSP) in CA1 pyramidal neurons in male and female offspring hippocampal slices from postnatal days (PNDs) 18-20, 34, 70 and 90. Depression of hippocampal excitatory transmission appeared at juvenile age in male offspring of the poly I:C group, while it expressed with a delay in female, manifesting at adulthood. In addition, a reduced hippocampal size was found in both adult male and female offspring of poly I:C treated dams. Treatment with RIS at the peri-adolescence period fully restored in males but partly repaired in females these deficiencies. A maturation- and sex-dependent decrease in hippocampal excitatory transmission occurs in the offspring of poly I:C treated pregnant mothers. Pharmacological intervention with RIS during peri-adolescence can cure in a gender-sensitive fashion early occurring hippocampal synaptic deficits.


Asunto(s)
Potenciales Postsinápticos Excitadores , Hipocampo/fisiopatología , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Células Piramidales/fisiología , Esquizofrenia/fisiopatología , Animales , Modelos Animales de Enfermedad , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Femenino , Hipocampo/efectos de los fármacos , Hipocampo/crecimiento & desarrollo , Masculino , Tamaño de los Órganos/efectos de los fármacos , Poli I-C/administración & dosificación , Embarazo , Células Piramidales/efectos de los fármacos , Ratas , Ratas Wistar , Risperidona/administración & dosificación , Esquizofrenia/inducido químicamente
4.
J Biol Chem ; 287(33): 27614-28, 2012 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-22722941

RESUMEN

Non-receptor-tyrosine kinases (protein-tyrosine kinases) and non-receptor tyrosine phosphatases (PTPs) have been implicated in the regulation of ion channels, neuronal excitability, and synaptic plasticity. We previously showed that protein-tyrosine kinases such as Src kinase and PTPs such as PTPα and PTPε modulate the activity of delayed-rectifier K(+) channels (I(K)). Here we show cultured cortical neurons from PTPε knock-out (EKO) mice to exhibit increased excitability when compared with wild type (WT) mice, with larger spike discharge frequency, enhanced fast after-hyperpolarization, increased after-depolarization, and reduced spike width. A decrease in I(K) and a rise in large-conductance Ca(2+)-activated K(+) currents (mBK) were observed in EKO cortical neurons compared with WT. Parallel studies in transfected CHO cells indicate that Kv1.1, Kv1.2, Kv7.2/7.3, and mBK are plausible molecular correlates of this multifaceted modulation of K(+) channels by PTPε. In CHO cells, Kv1.1, Kv1.2, and Kv7.2/7.3 K(+) currents were up-regulated by PTPε, whereas mBK channel activity was reduced. The levels of tyrosine phosphorylation of Kv1.1, Kv1.2, Kv7.3, and mBK potassium channels were increased in the brain cortices of neonatal and adult EKO mice compared with WT, suggesting that PTPε in the brain modulates these channel proteins. Our data indicate that in EKO mice, the lack of PTPε-mediated dephosphorylation of Kv1.1, Kv1.2, and Kv7.3 leads to decreased I(K) density and enhanced after-depolarization. In addition, the deficient PTPε-mediated dephosphorylation of mBK channels likely contributes to enhanced mBK and fast after-hyperpolarization, spike shortening, and consequent increase in neuronal excitability observed in cortical neurons from EKO mice.


Asunto(s)
Corteza Cerebral/metabolismo , Potenciales de la Membrana/fisiología , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Canales de Potasio con Entrada de Voltaje/metabolismo , Proteínas Tirosina Fosfatasas Clase 4 Similares a Receptores/metabolismo , Animales , Células CHO , Corteza Cerebral/citología , Cricetinae , Cricetulus , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Neuronas/citología , Fosforilación/genética , Canales de Potasio con Entrada de Voltaje/genética , Proteínas Tirosina Fosfatasas Clase 4 Similares a Receptores/genética
5.
Proc Natl Acad Sci U S A ; 107(35): 15637-42, 2010 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-20713704

RESUMEN

The pore and gate regions of voltage-gated cation channels have been often targeted with drugs acting as channel modulators. In contrast, the voltage-sensing domain (VSD) was practically not exploited for therapeutic purposes, although it is the target of various toxins. We recently designed unique diphenylamine carboxylates that are powerful Kv7.2 voltage-gated K(+) channel openers or blockers. Here we show that a unique Kv7.2 channel opener, NH29, acts as a nontoxin gating modifier. NH29 increases Kv7.2 currents, thereby producing a hyperpolarizing shift of the activation curve and slowing both activation and deactivation kinetics. In neurons, the opener depresses evoked spike discharges. NH29 dampens hippocampal glutamate and GABA release, thereby inhibiting excitatory and inhibitory postsynaptic currents. Mutagenesis and modeling data suggest that in Kv7.2, NH29 docks to the external groove formed by the interface of helices S1, S2, and S4 in a way that stabilizes the interaction between two conserved charged residues in S2 and S4, known to interact electrostatically, in the open state of Kv channels. Results indicate that NH29 may operate via a voltage-sensor trapping mechanism similar to that suggested for scorpion and sea-anemone toxins. Reflecting the promiscuous nature of the VSD, NH29 is also a potent blocker of TRPV1 channels, a feature similar to that of tarantula toxins. Our data provide a structural framework for designing unique gating-modifiers targeted to the VSD of voltage-gated cation channels and used for the treatment of hyperexcitability disorders.


Asunto(s)
Activación del Canal Iónico/efectos de los fármacos , Canal de Potasio KCNQ2/fisiología , ortoaminobenzoatos/farmacología , Animales , Sitios de Unión/genética , Células CHO , Bloqueadores de los Canales de Calcio/química , Bloqueadores de los Canales de Calcio/farmacología , Cricetinae , Cricetulus , Potenciales Postsinápticos Excitadores , Humanos , Potenciales Postsinápticos Inhibidores , Activación del Canal Iónico/fisiología , Canal de Potasio KCNQ2/química , Canal de Potasio KCNQ2/genética , Cinética , Potenciales de la Membrana/efectos de los fármacos , Modelos Moleculares , Estructura Molecular , Mutación , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/fisiología , Neurotransmisores/metabolismo , Multimerización de Proteína , Estructura Terciaria de Proteína , Canales Catiónicos TRPV/antagonistas & inhibidores , Canales Catiónicos TRPV/fisiología , Transfección , ortoaminobenzoatos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...