Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 194
Filtrar
1.
Gut Microbes ; 16(1): 2341457, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38630030

RESUMEN

With an increasing interest in dietary fibers (DFs) to promote intestinal health and the growth of beneficial gut bacteria, there is a continued rise in the incorporation of refined DFs in processed foods. It is still unclear how refined fibers, such as guar gum, affect the gut microbiota activity and pathogenesis of inflammatory bowel disease (IBD). Our study elucidated the effect and underlying mechanisms of guar gum, a fermentable DF (FDF) commonly present in a wide range of processed foods, on colitis development. We report that guar gum containing diet (GuD) increased the susceptibility to colonic inflammation. Specifically, GuD-fed group exhibited severe colitis upon dextran sulfate sodium (DSS) administration, as evidenced by reduced body weight, diarrhea, rectal bleeding, and shortening of colon length compared to cellulose-fed control mice. Elevated levels of pro-inflammatory markers in both serum [serum amyloid A (SAA), lipocalin 2 (Lcn2)] and colon (Lcn2) and extensive disruption of colonic architecture further affirmed that GuD-fed group exhibited more severe colitis than control group upon DSS intervention. Amelioration of colitis in GuD-fed group pre-treated with antibiotics suggest a vital role of intestinal microbiota in GuD-mediated exacerbation of intestinal inflammation. Gut microbiota composition and metabolite analysis in fecal and cecal contents, respectively, revealed that guar gum primarily enriches Actinobacteriota, specifically Bifidobacterium. Guar gum also altered multiple genera belonging to phyla Bacteroidota and Firmicutes. Such shift in gut microbiota composition favored luminal accumulation of intermediary metabolites succinate and lactate in the GuD-fed mice. Colonic IL-18 and tight junction markers were also decreased in the GuD-fed group. Importantly, GuD-fed mice pre-treated with recombinant IL-18 displayed attenuated colitis. Collectively, unfavorable changes in gut microbiota activity leading to luminal accumulation of lactate and succinate, reduced colonic IL-18, and compromised gut barrier function following guar gum feeding contributed to increased colitis susceptibility.


Guar gum increased susceptibility to colitisGuar gum-induced exacerbation of colitis is gut microbiota dependentGuar gum-induced shift in microbiota composition favored the accumulation of luminal intermediate metabolites succinate and lactateGuar gum-fed mice exhibited reduced colonic level of IL-18 and tight junction molecules.Exogenous IL-18 administration partly rescued mice from guar gum-induced colitis susceptibility.


Asunto(s)
Colitis , Galactanos , Microbioma Gastrointestinal , Mananos , Gomas de Plantas , Animales , Ratones , Interleucina-18 , Inflamación , Colitis/inducido químicamente , Fibras de la Dieta , Ácido Láctico , Succinatos
2.
J Clin Invest ; 134(9)2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38512401

RESUMEN

Bacterial translocation from the gut microbiota is a source of sepsis in susceptible patients. Previous work suggests that overgrowth of gut pathobionts, including Klebsiella pneumoniae, increases the risk of disseminated infection. Our data from a human dietary intervention study found that, in the absence of fiber, K. pneumoniae bloomed during microbiota recovery from antibiotic treatment. We thus hypothesized that dietary nutrients directly support or suppress colonization of this gut pathobiont in the microbiota. Consistent with our study in humans, complex carbohydrates in dietary fiber suppressed the colonization of K. pneumoniae and allowed for recovery of competing commensals in mouse models. In contrast, through ex vivo and in vivo modeling, we identified simple carbohydrates as a limiting resource for K. pneumoniae in the gut. As proof of principle, supplementation with lactulose, a nonabsorbed simple carbohydrate and an FDA-approved therapy, increased colonization of K. pneumoniae. Disruption of the intestinal epithelium led to dissemination of K. pneumoniae into the bloodstream and liver, which was prevented by dietary fiber. Our results show that dietary simple and complex carbohydrates were critical not only in the regulation of pathobiont colonization but also disseminated infection, suggesting that targeted dietary interventions may offer a preventative strategy in high-risk patients.


Asunto(s)
Carbohidratos de la Dieta , Microbioma Gastrointestinal , Infecciones por Klebsiella , Klebsiella pneumoniae , Klebsiella pneumoniae/metabolismo , Humanos , Ratones , Animales , Infecciones por Klebsiella/microbiología , Infecciones por Klebsiella/prevención & control , Carbohidratos de la Dieta/metabolismo , Femenino , Masculino , Fibras de la Dieta/metabolismo , Mucosa Intestinal/microbiología , Mucosa Intestinal/metabolismo , Intestinos/microbiología
3.
Cell ; 187(7): 1801-1818.e20, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38471500

RESUMEN

The repertoire of modifications to bile acids and related steroidal lipids by host and microbial metabolism remains incompletely characterized. To address this knowledge gap, we created a reusable resource of tandem mass spectrometry (MS/MS) spectra by filtering 1.2 billion publicly available MS/MS spectra for bile-acid-selective ion patterns. Thousands of modifications are distributed throughout animal and human bodies as well as microbial cultures. We employed this MS/MS library to identify polyamine bile amidates, prevalent in carnivores. They are present in humans, and their levels alter with a diet change from a Mediterranean to a typical American diet. This work highlights the existence of many more bile acid modifications than previously recognized and the value of leveraging public large-scale untargeted metabolomics data to discover metabolites. The availability of a modification-centric bile acid MS/MS library will inform future studies investigating bile acid roles in health and disease.


Asunto(s)
Ácidos y Sales Biliares , Microbioma Gastrointestinal , Metabolómica , Espectrometría de Masas en Tándem , Animales , Humanos , Ácidos y Sales Biliares/química , Metabolómica/métodos , Poliaminas , Espectrometría de Masas en Tándem/métodos , Bases de Datos de Compuestos Químicos
4.
Nat Microbiol ; 9(2): 336-345, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38316926

RESUMEN

microbeMASST, a taxonomically informed mass spectrometry (MS) search tool, tackles limited microbial metabolite annotation in untargeted metabolomics experiments. Leveraging a curated database of >60,000 microbial monocultures, users can search known and unknown MS/MS spectra and link them to their respective microbial producers via MS/MS fragmentation patterns. Identification of microbe-derived metabolites and relative producers without a priori knowledge will vastly enhance the understanding of microorganisms' role in ecology and human health.


Asunto(s)
Metabolómica , Espectrometría de Masas en Tándem , Humanos , Metabolómica/métodos , Bases de Datos Factuales
5.
Nature ; 626(8000): 859-863, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38326609

RESUMEN

Bacteria in the gastrointestinal tract produce amino acid bile acid amidates that can affect host-mediated metabolic processes1-6; however, the bacterial gene(s) responsible for their production remain unknown. Herein, we report that bile salt hydrolase (BSH) possesses dual functions in bile acid metabolism. Specifically, we identified a previously unknown role for BSH as an amine N-acyltransferase that conjugates amines to bile acids, thus forming bacterial bile acid amidates (BBAAs). To characterize this amine N-acyltransferase BSH activity, we used pharmacological inhibition of BSH, heterologous expression of bsh and mutants in Escherichia coli and bsh knockout and complementation in Bacteroides fragilis to demonstrate that BSH generates BBAAs. We further show in a human infant cohort that BBAA production is positively correlated with the colonization of bsh-expressing bacteria. Lastly, we report that in cell culture models, BBAAs activate host ligand-activated transcription factors including the pregnane X receptor and the aryl hydrocarbon receptor. These findings enhance our understanding of how gut bacteria, through the promiscuous actions of BSH, have a significant role in regulating the bile acid metabolic network.


Asunto(s)
Aciltransferasas , Amidohidrolasas , Aminas , Ácidos y Sales Biliares , Biocatálisis , Microbioma Gastrointestinal , Humanos , Aciltransferasas/metabolismo , Amidohidrolasas/metabolismo , Aminas/química , Aminas/metabolismo , Bacteroides fragilis/enzimología , Bacteroides fragilis/genética , Bacteroides fragilis/metabolismo , Ácidos y Sales Biliares/química , Ácidos y Sales Biliares/metabolismo , Estudios de Cohortes , Escherichia coli/enzimología , Escherichia coli/genética , Escherichia coli/metabolismo , Microbioma Gastrointestinal/fisiología , Ligandos , Receptor X de Pregnano/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo , Factores de Transcripción/metabolismo , Lactante , Técnicas de Cultivo de Célula
6.
bioRxiv ; 2024 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-38352460

RESUMEN

Inter-organellar communication is critical for cellular metabolic homeostasis. One of the most abundant inter-organellar interactions are those at the endoplasmic reticulum and mitochondria contact sites (ERMCS). However, a detailed understanding of the mechanisms governing ERMCS regulation and their roles in cellular metabolism are limited by a lack of tools that permit temporal induction and reversal. Through unbiased screening approaches, we identified fedratinib, an FDA-approved drug, that dramatically increases ERMCS abundance by inhibiting the epigenetic modifier BRD4. Fedratinib rapidly and reversibly modulates mitochondrial and ER morphology and alters metabolic homeostasis. Moreover, ERMCS modulation depends on mitochondria electron transport chain complex III function. Comparison of fedratinib activity to other reported inducers of ERMCS revealed common mechanisms of induction and function, providing clarity and union to a growing body of experimental observations. In total, our results uncovered a novel epigenetic signaling pathway and an endogenous metabolic regulator that connects ERMCS and cellular metabolism.

7.
FASEB J ; 38(4): e23471, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38358358

RESUMEN

The intestinal epithelial layer is susceptible to damage by chemical, physiological and mechanical stress. While it is essential to maintain the integrity of epithelium, the biochemical pathways that contribute to the barrier function have not been completely investigated. Here we demonstrate an aryl hydrocarbon receptor (AHR)-dependent mechanism facilitating the production of the antimicrobial peptide AMP regenerating islet-derived protein 3 gamma (REG3G), which is essential for intestinal homeostasis. Genetic ablation of AHR in mice impairs pSTAT3-mediated REG3G expression and increases bacterial numbers of Segmented filamentous bacteria (SFB) and Akkermansia muciniphila in the small intestine. Studies with tissue-specific conditional knockout mice revealed that the presence of AHR in the epithelial cells of the small intestine is not required for the production of REG3G through the phosphorylated STAT3-mediated pathway. However, immune-cell-specific AHR activity is necessary for normal expression of REG3G in all regions of the small intestine. A diet rich in broccoli, capable of inducing AHR activity, increases REG3G production when compared to a semi-purified diet that is devoid of ligands that can potentially activate the AHR, thus highlighting the importance of AHR in antimicrobial function. Overall, these data suggest that homeostatic antimicrobial REG3G production is increased by an AHR pathway intrinsic to the immune cells in the small intestine.


Asunto(s)
Antiinfecciosos , Receptores de Hidrocarburo de Aril , Animales , Ratones , Citoesqueleto , Células Epiteliales , Intestino Delgado , Ratones Noqueados , Receptores de Hidrocarburo de Aril/genética
8.
Cell Mol Gastroenterol Hepatol ; 17(5): 719-735, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38262588

RESUMEN

BACKGROUND & AIMS: Hepatocellular carcinoma (HCC) is a male-dominant disease, but targeted sex hormone therapies have not been successful. Bile acids are a potential liver carcinogen and are biomolecules with hormone-like effects. A few studies highlight their potential sex dimorphism in physiology and disease. We hypothesized that bile acids could be a potential molecular signature that explains sex disparity in HCC. METHODS & RESULTS: We used the farnesoid X receptor knockout (FxrKO) mouse model to study bile acid-dependent HCC. Temporal tracking of circulating bile acids determined more than 80% of FxrKO females developed spontaneous cholemia (ie, serum total bile acids ≥40 µmol/L) as early as 8 weeks old. Opposingly, FxrKO males were highly resistant to cholemia, with ∼23% incidence even when 26 weeks old. However, FxrKO males demonstrated higher levels of deoxycholate than females. Compared with males, FxrKO females had more severe cholestatic liver injury and further aberrancies in bile acid metabolism. Yet, FxrKO females expressed more detoxification transcripts and had greater renal excretion of bile acids. Intervention with CYP7A1 (rate limiting enzyme for bile acid biosynthesis) deficiency or taurine supplementation either completely or partially normalized bile acid levels and liver injury in FxrKO females. Despite higher cholemia prevalence in FxrKO females, their tumor burden was less compared with FxrKO males. An exception to this sex-dimorphic pattern was found in a subset of male and female FxrKO mice born with congenital cholemia due to portosystemic shunt, where both sexes had comparable robust HCC. CONCLUSIONS: Our study highlights bile acids as sex-dimorphic metabolites in HCC except in the case of portosystemic shunt.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Ratones , Masculino , Femenino , Animales , Carcinoma Hepatocelular/genética , Ácidos y Sales Biliares , Ratones Noqueados
9.
Microbiome ; 12(1): 5, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38178260

RESUMEN

BACKGROUND: The observation that the intestinal microbiota is  central in the development of IBD suggests that dietary fiber, the microbiota's primary source of nourishment, could play a central role in these diseases. Accordingly, enriching diets with specific soluble fibers remodels microbiota and modulates colitis sensitivity. In humans, a recent study suggests that the microbiota of select IBD patients might influence the impacts they would experience upon fiber exposure. We sought here to define the extent to which individual microbiotas varied in their responsiveness to purified soluble fiber inulin and psyllium. Moreover, the extent to which such variance might impact proneness to colitis. RESULTS: We observed a high level of inter-individual variation in microbiota responsiveness to fiber inulin and psyllium: while microbiotas from select donors exhibited stark fiber-induced modulation in composition, pro-inflammatory potential, and metabolomic profile, others were only minimally impacted. Mice transplanted with fiber-sensitive microbiomes exhibited colitis highly modulated by soluble fiber consumption, while mice receiving fiber-resistant microbiotas displayed colitis severity irrespective of fiber exposure. CONCLUSION: The extent to which select soluble fibers alter proneness to colitis is highly influenced by an individual's microbiota composition and further investigation of individual microbiota responsiveness toward specific dietary fiber could pave the way to personalized fiber-based intervention, both in IBD patients and healthy individuals. Video Abstract.


Asunto(s)
Colitis , Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino , Psyllium , Humanos , Ratones , Animales , Psyllium/efectos adversos , Inulina , Colitis/inducido químicamente , Fibras de la Dieta
10.
Nature ; 626(7998): 419-426, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38052229

RESUMEN

Determining the structure and phenotypic context of molecules detected in untargeted metabolomics experiments remains challenging. Here we present reverse metabolomics as a discovery strategy, whereby tandem mass spectrometry spectra acquired from newly synthesized compounds are searched for in public metabolomics datasets to uncover phenotypic associations. To demonstrate the concept, we broadly synthesized and explored multiple classes of metabolites in humans, including N-acyl amides, fatty acid esters of hydroxy fatty acids, bile acid esters and conjugated bile acids. Using repository-scale analysis1,2, we discovered that some conjugated bile acids are associated with inflammatory bowel disease (IBD). Validation using four distinct human IBD cohorts showed that cholic acids conjugated to Glu, Ile/Leu, Phe, Thr, Trp or Tyr are increased in Crohn's disease. Several of these compounds and related structures affected pathways associated with IBD, such as interferon-γ production in CD4+ T cells3 and agonism of the pregnane X receptor4. Culture of bacteria belonging to the Bifidobacterium, Clostridium and Enterococcus genera produced these bile amidates. Because searching repositories with tandem mass spectrometry spectra has only recently become possible, this reverse metabolomics approach can now be used as a general strategy to discover other molecules from human and animal ecosystems.


Asunto(s)
Amidas , Ácidos y Sales Biliares , Ésteres , Ácidos Grasos , Metabolómica , Animales , Humanos , Bifidobacterium/metabolismo , Ácidos y Sales Biliares/química , Ácidos y Sales Biliares/metabolismo , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Clostridium/metabolismo , Estudios de Cohortes , Enfermedad de Crohn/metabolismo , Enterococcus/metabolismo , Ésteres/química , Ésteres/metabolismo , Ácidos Grasos/química , Ácidos Grasos/metabolismo , Enfermedades Inflamatorias del Intestino/metabolismo , Metabolómica/métodos , Fenotipo , Receptor X de Pregnano/metabolismo , Reproducibilidad de los Resultados , Espectrometría de Masas en Tándem , Amidas/química , Amidas/metabolismo
12.
Food Funct ; 14(20): 9434-9445, 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37796030

RESUMEN

The green tea polyphenol, (-)-epigallocatechin-3-gallate (EGCG), has been studied for its potential positive health effects, but human and animal model studies have reported potential toxicity at high oral bolus doses. This study used liquid chromatography-mass spectrometry-based metabolomics to compare the urinary EGCG metabolite profile after administration of a single non-toxic (100 mg kg-1) or toxic (750 mg kg-1) oral bolus dose to male C57BL6/J mice to better understand how EGCG metabolism varies with dose. EGCG metabolites, including methyl, glucuronide, sulfate, and glucoside conjugates, were tentatively identified based on their mass to charge (m/z) ratio and fragment ion patterns. Partial least squares discriminant analysis (PLS-DA) results showed clear separation of the urine metabolite profiles between treatment groups. The most differentiating metabolites in the negative and positive ion modes were provisionally identified as di-glucuronidated EGCG quinone and di-glucuronidated EGCG, respectively. The presence of EGCG oxidation products at toxic dose is consistent with studies showing that EGCG toxicity is associated with oxidative stress. Relative amounts of methylated metabolites increased with dose to a lesser extent than glucuronide and sulfate metabolites, indicating that methylation is more prominent at low doses, whereas glucuronidation and sulfation may be more important at higher doses. One limitation of the current work is that the lack of commercially-available EGCG metabolite standards prevented absolute metabolite quantification and identification. Despite this limitation, these findings provide a basis for better understanding the dose-dependent changes in EGCG metabolism and advance studies on how these differences may contribute to the toxicity of high doses of EGCG.


Asunto(s)
Catequina , Glucurónidos , Humanos , Ratones , Masculino , Animales , , Sulfatos
13.
J Cyst Fibros ; 2023 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-37813785

RESUMEN

BACKGROUND: Alterations in gastrointestinal health are prominent manifestations of cystic fibrosis (CF) and can independently impact pulmonary function. Ivacaftor has been associated with robust improvements in pulmonary function and weight gain, but less is known about the impact of ivacaftor on the fecal microbiome, lipidome, and bile acids. METHODS: Stool samples from 18 patients with CF and gating mutations (ages 6-61 years, 13 pancreatic insufficient) were analyzed for fecal microbiome and lipidome composition as well as bile acid concentrations at baseline and after 3 months of treatment with ivacaftor. Microbiome composition was also assessed in a healthy reference cohort. RESULTS: Alpha and beta diversity of the microbiome were different between CF and reference cohort at baseline, but no treatment effect was seen in the CF cohort between baseline and 3 months. Seven lipids increased with treatment. No differences were seen in bile acid concentrations after treatment in CF. At baseline, 403 lipids and unconjugated bile acids were different between pancreatic insufficient (PI-CF) and sufficient (PS-CF) groups and 107 lipids were different between PI-CF and PS-CF after 3 months of treatment. CONCLUSIONS: The composition and diversity of the fecal microbiome were different in CF as compared to a healthy reference, and did not change after 3 months of ivacaftor. We detected modest differences in the fecal lipidome with treatment. Differences in lipid and bile acid profiles between PS-CF and PI-CF were attenuated after 3 months of treatment.

14.
Metabolites ; 13(9)2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37755265

RESUMEN

The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that plays an important role in gastrointestinal barrier function, tumorigenesis, and is an emerging drug target. The resident microbiota is capable of metabolizing tryptophan to metabolites that are AHR ligands (e.g., indole-3-acetate). Recently, a novel set of mutagenic tryptophan metabolites named indolimines have been identified that are produced by M. morganii in the gastrointestinal tract. Here, we determined that indolimine-200, -214, and -248 are direct AHR ligands that can induce Cyp1a1 transcription and subsequent CYP1A1 enzymatic activity capable of metabolizing the carcinogen benzo(a)pyrene in microsomal assays. In addition, indolimines enhance IL6 expression in a colonic tumor cell line in combination with cytokine treatment. The concentration of indolimine-248 that induces AHR transcriptional activity failed to increase DNA damage. These observations reveal an additional aspect of how indolimines may alter colonic tumorigenesis beyond mutagenic activity.

15.
Function (Oxf) ; 4(5): zqad040, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37575479

RESUMEN

Sporadic occurrence of congenital portosystemic shunt (PSS) at a rate of ∼1 out of 10 among C57BL/6 J mice, which are widely used in biomedical research, results in aberrancies in serologic, metabolic, and physiologic parameters. Therefore, mice with PSS should be identified as outliers in research. Accordingly, we sought methods to, reliably and efficiently, identify PSS mice. Serum total bile acids ≥ 40 µm is a bona fide biomarker of PSS in mice but utility of this biomarker is limited by its cost and invasiveness, particularly if large numbers of mice are to be screened. This led us to investigate if assay of urine might serve as a simple, inexpensive, noninvasive means of PSS diagnosis. Metabolome profiling uncovered that Krebs cycle intermediates, that is, citrate, α-ketoglutarate, and fumarate, were strikingly and distinctly elevated in the urine of PSS mice. We leveraged the iron-chelating and pH-lowering properties of such metabolites as the basis for 3 urine-based PSS screening tests: urinary iron-chelation assay, pH strip test, and phenol red assay. Our findings demonstrate the feasibility of using these colorimetric assays, whereby their readout can be assessed by direct observation, to diagnose PSS in an inexpensive, rapid, and noninvasive manner. Application of our urinary PSS screening protocols can aid biomedical research by enabling stratification of PSS mice, which, at present, likely confound numerous ongoing studies.


Asunto(s)
Derivación Portosistémica Intrahepática Transyugular , Malformaciones Vasculares , Animales , Ratones , Ratones Endogámicos C57BL , Sistema Porta/anomalías , Biomarcadores
16.
Res Sq ; 2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37577622

RESUMEN

MicrobeMASST, a taxonomically-informed mass spectrometry (MS) search tool, tackles limited microbial metabolite annotation in untargeted metabolomics experiments. Leveraging a curated database of >60,000 microbial monocultures, users can search known and unknown MS/MS spectra and link them to their respective microbial producers via MS/MS fragmentation patterns. Identification of microbial-derived metabolites and relative producers, without a priori knowledge, will vastly enhance the understanding of microorganisms' role in ecology and human health.

17.
Metabolites ; 13(8)2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37623879

RESUMEN

Long-term ligand activation of PPARα in mice causes hepatocarcinogenesis through a mechanism that requires functional PPARα. However, hepatocarcinogenesis is diminished in both Ppara-null and PPARA-humanized mice, yet both lines develop age-related liver cancer independently of treatment with a PPARα agonist. Since PPARα is a master regulator of liver lipid metabolism in the liver, lipidomic analyses were carried out in wild-type, Ppara-null, and PPARA-humanized mice treated with and without the potent agonist GW7647. The levels of hepatic linoleic acid in Ppara-null and PPARA-humanized mice were markedly higher compared to wild-type controls, along with overall fatty liver. The number of liver CD4+ T cells was also lower in Ppara-null and PPARA-humanized mice and was negatively correlated with the elevated linoleic acid. Moreover, more senescent hepatocytes and lower serum TNFα and IFNγ levels were observed in Ppara-null and PPARA-humanized mice with age. These studies suggest a new role for PPARα in age-associated hepatocarcinogenesis due to altered lipid metabolism in Ppara-null and PPARA-humanized mice and the accumulation of linoleic acid as part of an overall fatty liver that is associated with loss of CD4+ T cells in the liver in both transgenic models. Since fatty liver is a known causal risk factor for liver cancer, Ppara-null and PPARA-humanized mice are valuable models for examining the mechanisms of PPARα and age-dependent hepatocarcinogenesis.

18.
bioRxiv ; 2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37398234

RESUMEN

The human gut teems with a diverse ecosystem of microbes, yet non-bacterial portions of that community are overlooked in studies of metabolic diseases firmly linked to gut bacteria. Type 2 diabetes mellitus (T2D) associates with compositional shifts in the gut bacterial microbiome and fungal mycobiome, but whether T2D and/or pharmaceutical treatments underpin the community change is unresolved. To differentiate these effects, we curated a gut mycobiome cohort to-date spanning 1,000 human samples across 5 countries and a murine experimental model. We use Bayesian multinomial logistic normal models to show that metformin and T2D both associate with shifts in the relative abundance of distinct gut fungi. T2D associates with shifts in the Saccharomycetes and Sordariomycetes fungal classes, while the genera Fusarium and Tetrapisipora most consistently associate with metformin treatment. We confirmed the impact of metformin on individual gut fungi by administering metformin to healthy mice. Thus, metformin and T2D account for subtle, but significant and distinct variation in the gut mycobiome across human populations. This work highlights for the first time that oral pharmaceuticals can confound associations of gut fungi with T2D and warrants the need to consider pharmaceutical interventions in investigations of linkages between metabolic diseases and gut microbial inhabitants.

19.
J Funct Foods ; 1062023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37397272

RESUMEN

Diet-derived aryl hydrocarbon receptor (AHR) ligands have potential to maintain gut health. However, among the myriad bioactive compounds from foods, identifying novel functional ligands which would significantly impact gastrointestinal health is a challenge. In this study, a novel AHR modulator is predicted, identified, and characterized in the white button mushroom (Agaricus bisporus). Using a molecular networking approach, a methylated analog to benzothiazole was indicated in white button mushrooms, which was subsequently isolated and identified as 2-amino-4-methyl-benzothiazole(2A4). Cell-based AHR transcriptional assays revealed that 2-amino-4-methyl-benzothiazole possesses agonistic activity and upregulated CYP1A1 expression. This contrasts with previous findings that whole white button mushroom extract has overall antagonistic activity in vivo, underscoring the importance of studying the roles each chemical component plays in a whole food. The findings suggest that 2-amino-4-methyl-benzothiazole is a previously unidentified AHR modulator from white button mushroom and demonstrate that molecular networking has potential to identify novel receptor modulators from natural products.

20.
Cancer Rep (Hoboken) ; 6(11): e1863, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37489647

RESUMEN

BACKGROUND AND AIM: There is an increased risk of colon cancer associated with inflammatory bowel disease (IBD). Dietary fibers (DFs) naturally present in vegetables and whole grains offer numerous beneficial effects on intestinal health. However, the effects of refined DFs on intestinal health remain unclear. Therefore, we elucidated the impact of the refined DF inulin on colonic inflammation and tumorigenesis. METHODS: Four-week-old wild-type (WT) mice were fed diets containing insoluble DF cellulose (control) or refined DF inulin for 4 weeks. A subgroup of mice was then switched to drinking water containing dextran sulfate sodium (DSS, 1.4% wt/vol) for colitis induction. In another subgroup of mice, colitis-associated colorectal cancer (CRC) was initiated with three 7-day alternate cycles of DSS following an initial dose of mutagenic substance azoxymethane (AOM; 7.5 mg/kg body weight; i.p.). Post 7 weeks of AOM treatment, mice were euthanized and examined for CRC development. RESULTS: Mice consuming inulin-containing diet exhibited severe colitis upon DSS administration, as evidenced by more body weight loss, rectal bleeding, and increased colonic inflammation than the DSS-treated control group. Correspondingly, histological analysis revealed extensive disruption of colon architecture and massive infiltration of immune cells in the inulin-fed group. We next examined the effect of inulin on CRC development. Surprisingly, significant mortality (~50%) was observed in the inulin-fed but not in the control group during the DSS cycle. Consequently, the remaining inulin-fed mice, which completed the study exhibited extensive colon tumorigenesis. Immunohistochemical characterization showed comparatively high expression of the cell proliferation marker Ki67 and activation of the Wnt signaling in tumor sections obtained from the inulin-fed group. Gut microbiota and metabolite analysis revealed expansion of succinate producers and elevated cecal succinate in inulin-fed mice. Human colorectal carcinoma cells (HCT116) proliferated more rapidly when supplemented with succinate in an inflamed environment, suggesting that elevated luminal succinate may contribute to tumorigenesis. CONCLUSIONS: Our study uncovers that supplementation of diet with refined inulin induces abnormal succinate accumulation in the intestinal lumen, which in part contributes to promoting colon inflammation and tumorigenesis.


Asunto(s)
Colitis , Neoplasias del Colon , Neoplasias Colorrectales , Humanos , Animales , Ratones , Inulina , Ácido Succínico , Sulfato de Dextran/toxicidad , Inflamación/complicaciones , Inflamación/patología , Colitis/complicaciones , Colitis/metabolismo , Colitis/patología , Neoplasias del Colon/inducido químicamente , Neoplasias Colorrectales/inducido químicamente , Carcinogénesis , Transformación Celular Neoplásica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...