Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mol Oncol ; 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459421

RESUMEN

Acute myeloid leukaemia (AML) is a clonal haematological malignancy affecting the myeloid lineage, with generally poor patient outcomes owing to the lack of targeted therapies. The histone lysine demethylase 4A (KDM4A) has been established as a novel therapeutic target in AML, due to its selective oncogenic role within leukaemic cells. We identify that the transcription factor nuclear factor of activated T cells 2 (NFATC2) is a novel binding and transcriptional target of KDM4A in the human AML THP-1 cell line. Furthermore, cytogenetically diverse AML cell lines, including THP-1, were dependent on NFATC2 for colony formation in vitro, highlighting a putative novel mechanism of AML oncogenesis. Our study demonstrates that NFATC2 maintenance of cell cycle progression in human AML cells was driven primarily by CCND1. Through RNA sequencing (RNA-seq) and chromatin immunoprecipitation sequencing (ChIP-seq), NFATc2 was shown to bind to the promoter region of genes involved in oxidative phosphorylation and subsequently regulate their gene expression in THP-1 cells. Furthermore, our data show that NFATC2 shares transcriptional targets with the transcription factor c-MYC, with MYC knockdown phenocopying NFATC2 knockdown. These data suggest a newly identified co-ordinated role for NFATC2 and MYC in the maintenance of THP-1 cell function, indicative of a potential means of therapeutic targeting in human AML.

2.
Curr Hematol Malig Rep ; 18(2): 19-32, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36780103

RESUMEN

PURPOSE OF REVIEW: Tyrosine kinase inhibitors (TKIs) are very successful for the treatment of chronic myeloid leukaemia (CML) but are not curative in most patients due to persistence of TKI-resistant leukaemia stem cells (LSCs). The bone marrow immune microenvironment (BME) provides protection to the LSC through multidimensional interactions, driving therapy resistance, and highlighting the need to circumvent these protective niches therapeutically. This review updates the evidence for interactions between CML cells and the immune microenvironment with a view to identifying targetable therapeutic vulnerabilities and describes what is known about the role of immune regulation in treatment-free remission (TFR). RECENT FINDINGS: Intracellular signalling downstream of the chemotactic CXCL12-CXCR4 axis, responsible for disrupted homing in CML, has been elucidated in LSCs, highlighting novel therapeutic opportunities. In addition, LSCs expressing CXCL12-cleaving surface protein CD26 were highly correlated with CML burden, building on existing evidence. Newer findings implicate the adhesion molecule CD44 in TKI resistance, while JAK/STAT-mediated resistance to TKIs may occur downstream of extrinsic signalling in the BME. Exosomal BME-LSC cross-communication has also been explored. Finally, further detail on the phenotypes of natural killer (NK) cells putatively involved in maintaining successful TFR has been published, and NK-based immunotherapies are discussed. Recent studies highlight and build on our understanding of the BME in CML persistence and TKI resistance, pinpointing therapeutically vulnerable interactions. Repurposing existing drugs and/or the development of novel inhibitors targeting these relationships may help to overcome these issues in TKI-resistant CML and be used as adjuvant therapy for sustained TFR.


Asunto(s)
Médula Ósea , Leucemia Mielógena Crónica BCR-ABL Positiva , Humanos , Inhibidores de Proteínas Quinasas , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Transducción de Señal , Células Madre Neoplásicas/metabolismo , Microambiente Tumoral
3.
Stem Cell Rev Rep ; 17(6): 2178-2192, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34410592

RESUMEN

Mesenchymal stem cells (MSCs) can become dysfunctional in patients with hematological disorders. An unanswered question is whether age-linked disruption of the bone marrow (BM) microenvironment is secondary to hematological dysfunction or vice versa. We therefore studied MSC function in patients with different hematological disorders and found decreased MHC-II except from one sample with acute myeloid leukemia (AML). The patients' MSCs were able to exert veto properties except for AML MSCs. While the expression of MHC-II appeared to be irrelevant to the immune licensing of MSCs, AML MSCs lost their ability to differentiate upon contact and rather, continued to proliferate, forming foci-like structures. We performed a retrospective study that indicated a significant increase in MSCs, based on phenotype, for patients with BM fibrosis. This suggests a role for MSCs in patients transitioning to leukemia. NFĸB was important to MSC function and was shown to be a potential target to sensitize leukemic CD34+/CD38- cells to azacitidine. This correlated with their lack of allogeneic stimulation. This study identified NFĸB as a potential target for combination therapy to treat leukemia stem cells and showed that understanding MSC biology and immune response could be key in determining how the aging BM might support leukemia. More importantly, we show how MSCs might be involved in transitioning the high risk patient with hematological disorder to AML.


Asunto(s)
Neoplasias Hematológicas , Células Madre Mesenquimatosas , Células de la Médula Ósea , Proliferación Celular , Neoplasias Hematológicas/metabolismo , Humanos , Células Madre Mesenquimatosas/metabolismo , Estudios Retrospectivos , Microambiente Tumoral
4.
Cell Death Dis ; 12(6): 573, 2021 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-34083515

RESUMEN

Epigenomic dysregulation is a common pathological feature in human hematological malignancies. H3K9me3 emerges as an important epigenomic marker in acute myeloid leukemia (AML). Its associated methyltransferases, such as SETDB1, suppress AML leukemogenesis, whilst H3K9me3 demethylases KDM4C is required for mixed-lineage leukemia rearranged AML. However, the specific role and molecular mechanism of action of another member of the KDM4 family, KDM4A has not previously been clearly defined. In this study, we delineated and functionally validated the epigenomic network regulated by KDM4A. We show that selective loss of KDM4A is sufficient to induce apoptosis in a broad spectrum of human AML cells. This detrimental phenotype results from a global accumulation of H3K9me3 and H3K27me3 at KDM4A targeted genomic loci thereby causing downregulation of a KDM4A-PAF1 controlled transcriptional program essential for leukemogenesis, distinct from that of KDM4C. From this regulatory network, we further extracted a KDM4A-9 gene signature enriched with leukemia stem cell activity; the KDM4A-9 score alone or in combination with the known LSC17 score, effectively stratifies high-risk AML patients. Together, these results establish the essential and unique role of KDM4A for AML self-renewal and survival, supporting further investigation of KDM4A and its targets as a potential therapeutic vulnerability in AML.


Asunto(s)
Autorrenovación de las Células/genética , Supervivencia Celular/genética , Epigenómica/métodos , Histona Demetilasas/metabolismo , Leucemia Mieloide Aguda/genética , Animales , Apoptosis , Humanos , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA