Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38370810

RESUMEN

Predicting T cell receptor (TCR) activation is challenging due to the lack of both unbiased benchmarking datasets and computational methods that are sensitive to small mutations to a peptide. To address these challenges, we curated a comprehensive database encompassing complete single amino acid mutational assays of 10,750 TCR-peptide pairs, centered around 14 immunogenic peptides against 66 TCRs. We then present an interpretable Bayesian model, called BATMAN, that can predict the set of peptides that activates a TCR. When validated on our database, BATMAN outperforms existing methods by 20% and reveals important biochemical predictors of TCR-peptide interactions.

2.
bioRxiv ; 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38077028

RESUMEN

T cell receptor (TCR) repertoire diversity enables the orchestration of antigen-specific immune responses against the vast space of possible pathogens. Identifying TCR/antigen binding pairs from the large TCR repertoire and antigen space is crucial for biomedical research. Here, we introduce copepodTCR, an open-access tool for the design and interpretation of high-throughput experimental assays to determine TCR specificity. copepodTCR implements a combinatorial peptide pooling scheme for efficient experimental testing of T cell responses against large overlapping peptide libraries, useful for "deorphaning" TCRs of unknown specificity. The scheme detects experimental errors and, coupled with a hierarchical Bayesian model for unbiased results interpretation, identifies the response-eliciting peptide for a TCR of interest out of hundreds of peptides tested using a simple experimental set-up. We experimentally validated our approach on a library of 253 overlapping peptides covering the SARS-CoV-2 spike protein. We provide experimental guides for efficient design of larger screens covering thousands of peptides which will be crucial for the identification of antigen-specific T cells and their targets from limited clinical material.

3.
Sci Rep ; 13(1): 21071, 2023 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-38030676

RESUMEN

The efficacy of pre-erythrocytic stage malaria antigens or vaccine platforms is routinely assessed in murine models challenged with Plasmodium sporozoites. Relative liver-stage parasite burden is quantified using reverse transcription quantitative PCR (RTqPCR), which relies on constitutively expressed endogenous control reference genes. However, the stability of host-reference gene expression for RTqPCR analysis following Plasmodium challenge and immunization has not been systematically evaluated. Herein, we evaluated the stability of expression of twelve common RTqPCR reference genes in a murine model of Plasmodium yoelii sporozoite challenge and DNA-adenovirus IV 'Prime-Target' immunization. Significant changes in expression for six of twelve reference genes were shown by one-way ANOVA, when comparing gene expression levels among challenge, immunized, and naïve mice groups. These changes were attributed to parasite challenge or immunization when comparing group means using post-hoc Bonferroni corrected multiple comparison testing. Succinate dehydrogenase (SDHA) and TATA-binding protein (TBP) were identified as stable host-reference genes suitable for relative RTqPCR data normalisation, using the RefFinder package. We defined a robust threshold of 'partial-protection' with these genes and developed a strategy to simultaneously quantify matched host parasite burden and cytokine responses following immunisation or challenge. This is the first report systematically identifying reliable host reference genes for RTqPCR analysis following Plasmodium sporozoite challenge. A robust RTqPCR protocol incorporating reliable reference genes which enables simultaneous analysis of host whole-liver cytokine responses and parasite burden will significantly standardise and enhance results between international malaria vaccine efficacy studies.


Asunto(s)
Vacunas contra la Malaria , Malaria , Parásitos , Plasmodium yoelii , Animales , Ratones , Parásitos/genética , Malaria/parasitología , Vacunas contra la Malaria/genética , Inmunidad , Citocinas/genética , Expresión Génica , Esporozoítos/genética , Ratones Endogámicos BALB C , Plasmodium yoelii/genética
4.
Int J Mol Sci ; 23(18)2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36142559

RESUMEN

Whole-blood-derived transcriptional profiling is widely used in biomarker discovery, immunological research, and therapeutic development. Traditional molecular and high-throughput transcriptomic platforms, including molecular assays with quantitative PCR (qPCR) and RNA-sequencing (RNA-seq), are dependent upon high-quality and intact RNA. However, collecting high-quality RNA from field studies in remote tropical locations can be challenging due to resource restrictions and logistics of post-collection processing. The current study tested the relative performance of the two most widely used whole-blood RNA collection systems, PAXgene® and Tempus™, in optimal laboratory conditions as well as suboptimal conditions in tropical field sites, including the effects of extended storage times and high storage temperatures. We found that Tempus™ tubes maintained a slightly higher RNA quantity and integrity relative to PAXgene® tubes at suboptimal tropical conditions. Both PAXgene® and Tempus™ tubes gave similar RNA purity (A260/A280). Additionally, Tempus™ tubes preferentially maintained the stability of mRNA transcripts for two reference genes tested, Succinate dehydrogenase complex, subunit A (SDHA) and TATA-box-binding protein (TBP), even when RNA quality decreased with storage length and temperature. Both tube types preserved the rRNA transcript 18S ribosomal RNA (18S) equally. Our results suggest that Tempus™ blood RNA collection tubes are preferable to PAXgene® for whole-blood collection in suboptimal tropical conditions for RNA-based studies in resource-limited settings.


Asunto(s)
ARN , Succinato Deshidrogenasa , Biomarcadores , Recolección de Muestras de Sangre/métodos , Perfilación de la Expresión Génica/métodos , ARN/genética , ARN Mensajero/genética , ARN Ribosómico 18S/genética , Succinato Deshidrogenasa/genética , Proteína de Unión a TATA-Box/genética , Temperatura
5.
Front Immunol ; 12: 720550, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34733274

RESUMEN

Targeted delivery of antigen to antigen presenting cells (APCs) is an efficient way to induce robust antigen-specific immune responses. Here, we present a novel DNA vaccine that targets the Plasmodium falciparum reticulocyte-binding protein homolog 5 (PfRH5), a leading blood-stage antigen of the human malaria pathogen, to APCs. The vaccine is designed as bivalent homodimers where each chain is composed of an amino-terminal single chain fragment variable (scFv) targeting unit specific for major histocompatibility complex class II (MHCII) expressed on APCs, and a carboxyl-terminal antigenic unit genetically linked by the dimerization unit. This vaccine format, named "Vaccibody", has previously been successfully applied for antigens from other infectious diseases including influenza and HIV, as well as for tumor antigens. Recently, the crystal structure and key functional antibody epitopes for the truncated version of PfRH5 (PfRH5ΔNL) were characterized, suggesting PfRH5ΔNL to be a promising candidate for next-generation PfRH5 vaccine design. In this study, we explored the APC-targeting strategy for a PfRH5ΔNL-containing DNA vaccine. BALB/c mice immunized with the targeted vaccine induced higher PfRH5-specific IgG1 antibody responses than those vaccinated with a non-targeted vaccine or antigen alone. The APC-targeted vaccine also efficiently induced rapid IFN-γ and IL-4 T cell responses. Furthermore, the vaccine-induced PfRH5-specific IgG showed inhibition of growth of the P. falciparum 3D7 clone parasite in vitro. Finally, sera obtained after vaccination with this targeted vaccine competed for the same epitopes as PfRH5-specific mAbs from vaccinated humans. Robust humoral responses were also induced by a similar P. vivax Duffy-binding protein (PvDBP)-containing targeted DNA vaccine. Our data highlight a novel targeted vaccine platform for the development of vaccines against blood-stage malaria.


Asunto(s)
Anticuerpos Antiprotozoarios/inmunología , Células Presentadoras de Antígenos/inmunología , Proteínas Portadoras/inmunología , Vacunas contra la Malaria/inmunología , Malaria Falciparum/prevención & control , Plasmodium falciparum/inmunología , Linfocitos T/inmunología , Vacunas de ADN/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Especificidad de Anticuerpos/inmunología , Células Presentadoras de Antígenos/metabolismo , Antígenos de Protozoos/inmunología , Modelos Animales de Enfermedad , Epítopos/inmunología , Femenino , Orden Génico , Vectores Genéticos/genética , Inmunización , Malaria Falciparum/inmunología , Malaria Falciparum/metabolismo , Ratones , Linfocitos T/metabolismo
6.
Front Immunol ; 11: 564627, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33133076

RESUMEN

Despite extensive research, the development of an effective malaria vaccine remains elusive. The induction of robust and sustained T cell and antibody response by vaccination is an urgent unmet need. Chimeric virus-like particles (VLPs) are a promising vaccine platform. VLPs are composed of multiple subunit capsomeres which can be rapidly produced in a cost-effective manner, but the ability of capsomeres to induce antigen-specific cellular immune responses has not been thoroughly investigated. Accordingly, we have compared chimeric VLPs and their sub-unit capsomeres for capacity to induce CD8+ and CD4+ T cell and antibody responses. We produced chimeric murine polyomavirus VLPs and capsomeres each incorporating defined CD8+ T cell, CD4+ T cell or B cell repeat epitopes derived from Plasmodium yoelii CSP. VLPs and capsomeres were evaluated using both homologous or heterologous DNA prime/boost immunization regimens for T cell and antibody immunogenicity. Chimeric VLP and capsomere vaccine platforms induced robust CD8+ T cell responses at similar levels which was enhanced by a heterologous DNA prime. The capsomere platform was, however, more efficient at inducing CD4+ T cell responses and less efficient at inducing antigen-specific antibody responses. Our data suggest that capsomeres, which have significant manufacturing advantages over VLPs, should be considered for diseases where a T cell response is the desired outcome.


Asunto(s)
Anticuerpos Antivirales/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Epítopos de Linfocito T/inmunología , Plasmodium yoelii/inmunología , Poliomavirus/inmunología , Vacunas de Partículas Similares a Virus/inmunología , Animales , Proteínas de la Cápside/inmunología , Epítopos de Linfocito B/genética , Epítopos de Linfocito B/inmunología , Epítopos de Linfocito T/genética , Femenino , Inmunidad Celular/inmunología , Inmunización/métodos , Interferón gamma/metabolismo , Vacunas contra la Malaria/inmunología , Ratones , Ratones Endogámicos BALB C , Mutagénesis Insercional , Vacunas de Partículas Similares a Virus/genética
7.
Artículo en Inglés | MEDLINE | ID: mdl-31275867

RESUMEN

An effective vaccine against the Plasmodium parasite is likely to require the induction of robust antibody and T cell responses. Chimeric virus-like particles are an effective vaccine platform for induction of antibody responses, but their capacity to induce robust cellular responses and cell-mediated protection against pathogen challenge has not been established. To evaluate this, we produced chimeric constructs using the murine polyomavirus structural protein with surface-exposed CD8+ or CD4+ T cell or B cell repeat epitopes derived from the Plasmodium yoelii circumsporozoite protein, and assessed immunogenicity and protective capacity in a murine model. Robust CD8+ T cell responses were induced by immunization with the chimeric CD8+ T cell epitope virus-like particles, however CD4+ T cell responses were very low. The B cell chimeric construct induced robust antibody responses but there was no apparent synergy when T cell and B cell constructs were administered as a pool. A heterologous prime/boost regimen using plasmid DNA priming followed by a VLP boost was more effective than homologous VLP immunization for cellular immunity and protection. These data show that chimeric murine polyomavirus virus-like particles are a good platform for induction of CD8+ T cell responses as well as antibody responses.


Asunto(s)
Formación de Anticuerpos/inmunología , Antígenos de Protozoos/inmunología , Linfocitos T CD8-positivos/inmunología , Poliomavirus/inmunología , Vacunas de Partículas Similares a Virus/inmunología , Animales , Anticuerpos Antiprotozoarios , Linfocitos B , Linfocitos T CD4-Positivos , Modelos Animales de Enfermedad , Epítopos de Linfocito B/inmunología , Epítopos de Linfocito T/inmunología , Inmunidad Celular , Inmunización , Inmunización Secundaria , Vacunas contra la Malaria , Ratones , Ratones Endogámicos BALB C , Plasmodium yoelii , Poliomavirus/genética , Proteínas Protozoarias/inmunología , Vacunas de Partículas Similares a Virus/genética
8.
Cell ; 178(1): 216-228.e21, 2019 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-31204103

RESUMEN

The Plasmodium falciparum reticulocyte-binding protein homolog 5 (PfRH5) is the leading target for next-generation vaccines against the disease-causing blood-stage of malaria. However, little is known about how human antibodies confer functional immunity against this antigen. We isolated a panel of human monoclonal antibodies (mAbs) against PfRH5 from peripheral blood B cells from vaccinees in the first clinical trial of a PfRH5-based vaccine. We identified a subset of mAbs with neutralizing activity that bind to three distinct sites and another subset of mAbs that are non-functional, or even antagonistic to neutralizing antibodies. We also identify the epitope of a novel group of non-neutralizing antibodies that significantly reduce the speed of red blood cell invasion by the merozoite, thereby potentiating the effect of all neutralizing PfRH5 antibodies as well as synergizing with antibodies targeting other malaria invasion proteins. Our results provide a roadmap for structure-guided vaccine development to maximize antibody efficacy against blood-stage malaria.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antiprotozoarios/inmunología , Eritrocitos/parasitología , Vacunas contra la Malaria/inmunología , Malaria Falciparum/inmunología , Plasmodium falciparum/inmunología , Adolescente , Adulto , Animales , Sitios de Unión , Proteínas Portadoras/inmunología , Reacciones Cruzadas/inmunología , Epítopos/inmunología , Femenino , Células HEK293 , Voluntarios Sanos , Humanos , Malaria Falciparum/parasitología , Masculino , Merozoítos/fisiología , Persona de Mediana Edad , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/inmunología , Conejos , Ratas , Ratas Sprague-Dawley , Adulto Joven
9.
Front Immunol ; 10: 1254, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31214195

RESUMEN

The malaria genome encodes over 5,000 proteins and many of these have also been proposed to be potential vaccine candidates, although few of these have been tested clinically. RH5 is one of the leading blood-stage Plasmodium falciparum malaria vaccine antigens and Phase I/II clinical trials of vaccines containing this antigen are currently underway. Its likely mechanism of action is to elicit antibodies that can neutralize merozoites by blocking their invasion of red blood cells (RBC). However, many other antigens could also elicit neutralizing antibodies against the merozoite, and most of these have never been compared directly to RH5. The objective of this study was to compare a range of blood-stage antigens to RH5, to identify any antigens that outperform or synergize with anti-RH5 antibodies. We selected 55 gene products, covering 15 candidate antigens that have been described in the literature and 40 genes selected on the basis of bioinformatics functional prediction. We were able to make 20 protein-in-adjuvant vaccines from the original selection. Of these, S-antigen and CyRPA robustly elicited antibodies with neutralizing properties. Anti-CyRPA IgG generally showed additive GIA with anti-RH5 IgG, although high levels of anti-CyRPA-specific rabbit polyclonal IgG were required to achieve 50% GIA. Our data suggest that further vaccine antigen screening efforts are required to identify a second merozoite target with similar antibody-susceptibility to RH5.


Asunto(s)
Eritrocitos/inmunología , Eritrocitos/parasitología , Vacunas contra la Malaria/inmunología , Malaria Falciparum/inmunología , Merozoítos/inmunología , Plasmodium falciparum/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antiprotozoarios/inmunología , Especificidad de Anticuerpos/inmunología , Antígenos de Protozoos/genética , Antígenos de Protozoos/inmunología , Femenino , Humanos , Inmunoglobulina G/inmunología , Malaria Falciparum/prevención & control , Ratones , Plasmodium falciparum/genética , Plasmodium falciparum/crecimiento & desarrollo , Polimorfismo Genético , Proteínas Protozoarias/genética , Proteínas Protozoarias/inmunología
10.
Sci Rep ; 9(1): 4625, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30874593

RESUMEN

For many infectious diseases there is still no vaccine, even though potential protective antigens have been identified. Suitable platforms and conjugation routes are urgently needed to convert the promise of such antigens into broadly protective and scalable vaccines. Here we apply a newly established peptide-peptide ligation approach, SnoopLigase, for specific and irreversible coupling of antigens onto an oligomerization platform. SnoopLigase was engineered from a Streptococcus pneumoniae adhesin and enables isopeptide bond formation between two peptide tags: DogTag and SnoopTagJr. We expressed in bacteria DogTag linked to the self-assembling coiled-coil nanoparticle IMX313. This platform was stable over months at 37 °C when lyophilized, remaining reactive even after boiling. IMX-DogTag was efficiently coupled to two blood-stage malarial proteins (from PfEMP1 or CyRPA), with SnoopTagJr fused at the N- or C-terminus. We also showed SnoopLigase-mediated coupling of a telomerase peptide relevant to cancer immunotherapy. SnoopLigase-mediated nanoassembly enhanced the antibody response to both malaria antigens in a prime-boost model. Including or depleting SnoopLigase from the conjugate had little effect on the antibody response to the malarial antigens. SnoopLigase decoration represents a promising and accessible strategy for modular plug-and-display vaccine assembly, as well as providing opportunities for robust nanoconstruction in synthetic biology.


Asunto(s)
Adhesinas Bacterianas/inmunología , Péptidos/inmunología , Vacunas/biosíntesis , Adhesinas Bacterianas/metabolismo , Antígenos Bacterianos/inmunología , Antígenos de Protozoos/inmunología , Inmunoconjugados/metabolismo , Inmunoconjugados/farmacología , Nanopartículas/química , Péptidos/química , Streptococcus pneumoniae/metabolismo , Vacunación
11.
Front Immunol ; 10: 248, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30846985

RESUMEN

Cerebral malaria (CM) is one of the most severe complications of Plasmodium falciparum infection. There is evidence that repeated parasite exposure promotes resistance against CM. However, the immunological basis of this infection-induced resistance remains poorly understood. Here, utilizing the Plasmodium berghei ANKA (PbA) model of experimental cerebral malaria (ECM), we show that three rounds of infection and drug-cure protects against the development of ECM during a subsequent fourth (4X) infection. Exposure-induced resistance was associated with specific suppression of CD8+ T cell activation and CTL-related pathways, which corresponded with the development of heterogeneous atypical B cell populations as well as the gradual infection-induced generation and maintenance of high levels of anti-parasite IgG. Mechanistically, transfer of high-titer anti-parasite IgG did not protect 1X infected mice against ECM and depletion of atypical and regulatory B cells during 4X infection failed to abrogate infection-induced resistance to ECM. However, IgMi mice that were unable to produce secreted antibody, or undergo class switching, during the repeated rounds of infection failed to develop resistance against ECM. The failure of infection-induced protection in IgMi mice was associated with impaired development of atypical B cell populations and the inability to suppress pathogenic CD8+ T cell responses. Our results, therefore, suggest the importance of anti-parasite antibody responses, gradually acquired, and maintained through repeated Plasmodium infections, for modulating the B cell compartment and eventually suppressing memory CD8+ T cell reactivation to establish infection-induced resistance to ECM.


Asunto(s)
Formación de Anticuerpos/inmunología , Encéfalo/inmunología , Linfocitos T CD8-positivos/inmunología , Malaria Cerebral/inmunología , Plasmodium berghei/inmunología , Animales , Encéfalo/parasitología , Linfocitos T CD8-positivos/parasitología , Activación de Linfocitos/inmunología , Malaria Cerebral/parasitología , Malaria Falciparum/inmunología , Malaria Falciparum/parasitología , Ratones , Ratones Endogámicos C57BL
12.
Euro Surveill ; 24(6)2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30755292

RESUMEN

BACKGROUND: Influenza A(H3N2) virus rapidly evolves to evade human immune responses, resulting in changes in the antigenicity of haemagglutinin (HA). Therefore, continuous genetic and antigenic analyses of A(H3N2) virus are necessary to detect antigenic mutants as quickly as possible. AIM: We attempted to phylogenetically and antigenically capture the epidemic trend of A(H3N2) virus infection in Yokohama, Japan during the 2016/17 and 2017/18 influenza seasons. METHODS: We determined the HA sequences of A(H3N2) viruses detected in Yokohama, Japan during the 2016/17 and 2017/18 influenza seasons to identify amino acid substitutions and the loss or gain of potential N-glycosylation sites in HA, both of which potentially affect the antigenicity of HA. We also examined the antigenicity of isolates using ferret antisera obtained from experimentally infected ferrets. RESULTS: Influenza A(H3N2) viruses belonging to six clades (clades 3C.2A1, 3C.2A1a, 3C.2A1b, 3C.2A2, 3C.2A3 and 3C.2A4) were detected during the 2016/17 influenza season, whereas viruses belonging to two clades (clades 3C.2A1b and 3C.2A2) dominated during the 2017/18 influenza season. The isolates in clades 3C.2A1a and 3C.2A3 lost one N-linked glycosylation site in HA relative to other clades. Antigenic analysis revealed antigenic differences among clades, especially clade 3C.2A2 and 3C.2A4 viruses, which showed distinct antigenic differences from each other and from other clades in the antigenic map. CONCLUSION: Multiple clades, some of which differed antigenically from others, co-circulated in Yokohama, Japan during the 2016/17 and 2017/18 influenza seasons.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Subtipo H3N2 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/aislamiento & purificación , Gripe Humana/diagnóstico , ARN Viral/genética , Epidemias , Variación Genética , Hemaglutininas/genética , Humanos , Gripe Humana/epidemiología , Japón/epidemiología , Datos de Secuencia Molecular , Filogenia , ARN Viral/aislamiento & purificación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Estaciones del Año , Análisis de Secuencia de ADN
13.
NPJ Vaccines ; 3: 32, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30131879

RESUMEN

Plasmodium falciparum reticulocyte-binding protein homolog 5 (PfRH5) is a leading asexual blood-stage vaccine candidate for malaria. In preparation for clinical trials, a full-length PfRH5 protein vaccine called "RH5.1" was produced as a soluble product under cGMP using the ExpreS2 platform (based on a Drosophila melanogaster S2 stable cell line system). Following development of a high-producing monoclonal S2 cell line, a master cell bank was produced prior to the cGMP campaign. Culture supernatants were processed using C-tag affinity chromatography followed by size exclusion chromatography and virus-reduction filtration. The overall process yielded >400 mg highly pure RH5.1 protein. QC testing showed the MCB and the RH5.1 product met all specified acceptance criteria including those for sterility, purity, and identity. The RH5.1 vaccine product was stored at -80 °C and is stable for over 18 months. Characterization of the protein following formulation in the adjuvant system AS01B showed that RH5.1 is stable in the timeframe needed for clinical vaccine administration, and that there was no discernible impact on the liposomal formulation of AS01B following addition of RH5.1. Subsequent immunization of mice confirmed the RH5.1/AS01B vaccine was immunogenic and could induce functional growth inhibitory antibodies against blood-stage P. falciparum in vitro. The RH5.1/AS01B was judged suitable for use in humans and has since progressed to phase I/IIa clinical trial. Our data support the future use of the Drosophila S2 cell and C-tag platform technologies to enable cGMP-compliant biomanufacture of other novel and "difficult-to-express" recombinant protein-based vaccines.

14.
Chemistry ; 24(39): 9892-9902, 2018 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-29707835

RESUMEN

Adjuvant development and understanding the physicochemical properties of particles and interpreting the subsequent immunological responses is a challenge faced by many researchers in the vaccine field. We synthesized and investigated the physicochemical properties and immunogenicity of a library of multiple epitope self-adjuvant lipopeptides in a novel asymmetric arrangement. Vaccine candidates were synthesized using a combination of solid-phase peptide synthesis and copper-mediated click chemistry. In vivo studies showed that vaccine constructs containing a single OVA CD8+ T-cell epitope and two N-terminally located C16 lipid moieties were more effective at generating robust cellular immune responses compared to the same molecule containing multiple copies of the OVA CD8+ T-cell epitope with or without the C16 moieties. Furthermore, attachment of the two C16 lipids to the N-terminus provoked formation of long ß-sheet fibrils and was shown to induce a higher CD8+ donor T-cell frequency and IFN-γ secretion, compared to vaccine constructs with an internal lipid placement. A regression analysis indicated that particle secondary structure had a significant impact on CD8+ donor T-cell frequency and cytolytic activity. In addition, IFN-γ production was influenced significantly by particle shape. The findings of this research will impact the future design of a vaccine intended to elicit cellular immune responses.


Asunto(s)
Adyuvantes Inmunológicos/química , Epítopos de Linfocito T/inmunología , Lipopéptidos/química , Linfocitos T/inmunología , Animales , Ratones
15.
Bioconjug Chem ; 27(3): 533-48, 2016 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-26735314

RESUMEN

Present on the surface of antigen presenting cells (APCs), the mannose receptor (MR) has long been recognized as a front-line receptor in pathogen recognition. During the past decade many attempts have been made to target this receptor for applications including vaccine and drug development. In the present study, a library of vaccine constructs comprising fluorescently labeled mannosylated lipid-dendrimers that contained the ovalbumin CD4(+) epitope, OVA(323-339), as the model peptide antigen were synthesized using fluorenylmethyloxycarbonyl (Fmoc) solid phase peptide synthesis (SPPS). The vaccine constructs were designed with an alanine spacer between the O-linked mannose moieties to investigate the impact of distance between the mannose units on receptor-mediated uptake and/or binding in APCs. Uptake studies performed on F4/80(+) and CD11c(+) cells showed significant uptake and/or binding for lipopeptides containing mannose, and also the lipopeptide without mannose when compared to the control peptides (peptide with no lipid and peptide with no mannose and no lipid). Furthermore, mannan inhibition assays demonstrated that uptake of the mannosylated and lipidated peptides was receptor mediated. To address the specificity of receptor uptake, surface plasmon resonance studies were performed using biacore technology and confirmed high affinity of the mannosylated and lipidated vaccine constructs toward the MR. These studies confirm that both mannose and lipid moieties play significant roles in receptor-mediated uptake on APCs, potentially facilitating vaccine development.


Asunto(s)
Lectinas Tipo C/metabolismo , Lipopéptidos/síntesis química , Lectinas de Unión a Manosa/metabolismo , Manosa/química , Receptores de Superficie Celular/metabolismo , Secuencia de Aminoácidos , Células Presentadoras de Antígenos/metabolismo , Lipopéptidos/química , Lipopéptidos/metabolismo , Receptor de Manosa
16.
Syst Biol ; 64(2): 169-86, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25239212

RESUMEN

Paleontological systematics relies heavily on morphological data that have undergone decay and fossilization. Here, we apply a heuristic means to assess how a fossil's incompleteness detracts from inferring its phylogenetic relationships. We compiled a phylogenetic matrix for primates and simulated the extinction of living species by deleting an extant taxon's molecular data and keeping only those morphological characters present in actual fossils. The choice of characters present in a given living taxon (the subject) was defined by those present in a given fossil (the template). By measuring congruence between a well-corroborated phylogeny to those incorporating artificial fossils, and by comparing real vs. random character distributions and states, we tested the information content of paleontological datasets and determined if extinction of a living species leads to bias in phylogeny reconstruction. We found a positive correlation between fossil completeness and topological congruence. Real fossil templates sampled for 36 or more of the 360 available morphological characters (including dental) performed significantly better than similarly complete templates with random states. Templates dominated by only one partition performed worse than templates with randomly sampled characters across partitions. The template based on the Eocene primate Darwinius masillae performs better than most other templates with a similar number of sampled characters, likely due to preservation of data across multiple partitions. Our results support the interpretation that Darwinius is strepsirhine, not haplorhine, and suggest that paleontological datasets are reliable in primate phylogeny reconstruction.


Asunto(s)
Fósiles , Filogenia , Primates/clasificación , Animales , Extinción Biológica , Paleontología/normas , Primates/anatomía & histología
17.
Eur J Immunol ; 43(10): 2707-17, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23794196

RESUMEN

CD103⁺ dermal dendritic cells (dDCs) are a recently described DC subset of the skin shown to be the principal migratory DCs capable of efficiently cross-presenting antigens and activating CD8⁺ T cells. Harnessing their activity would promote vaccine efficacy, but it has been unclear how this can be achieved. We tested a panel of adjuvants for their ability to affect dDCs. In comparison to the other adjuvants tested, the capacity of cholera toxin (CT) to induce the migration of dDCs was unique. Within 24 h of CT injection, large numbers of highly activated dDCs (including CD103⁺ dDCs) migrated to the draining lymph nodes and cross-presented coinjected antigens, potently activating naïve CD8⁺ T cells. Peptide vaccines adjuvanted with CT induced T-cell responses uniquely characterized by dynamic cytokine responses including the production of IL-2, and such vaccines were protective in situations reliant on CD8⁺ T-cell responses, including liver-stage Plasmodium challenge, or tumor challenge. This study is the first to examine the effects of adjuvants on CD103⁺ dDCs and identifies CT as a prototypical adjuvant for the activation of CD103⁺ dDCs, opening the way to development of vaccines and adjuvants that specifically target dDCs and generate effective CD8⁺ T-cell responses.


Asunto(s)
Adyuvantes Inmunológicos/administración & dosificación , Linfocitos T CD8-positivos/inmunología , Movimiento Celular/inmunología , Toxina del Cólera/inmunología , Células de Langerhans/inmunología , Animales , Antígenos CD/metabolismo , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Toxina del Cólera/administración & dosificación , Reactividad Cruzada/efectos de los fármacos , Humanos , Inyecciones Subcutáneas , Cadenas alfa de Integrinas/metabolismo , Activación de Linfocitos , Ratones , Ratones Endogámicos BALB C , Plasmodium/inmunología , Vacunas de Subunidad/administración & dosificación , Vacunas de Subunidad/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...