Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38352415

RESUMEN

Synaptic plasticities, such as long-term potentiation (LTP) and depression (LTD), tune synaptic efficacy and are essential for learning and memory. Current studies of synaptic plasticity in humans are limited by a lack of adequate human models. Here, we modeled the thalamocortical system by fusing human induced pluripotent stem cell-derived thalamic and cortical organoids. Single-nucleus RNA-sequencing revealed that most cells in mature thalamic organoids were glutamatergic neurons. When fused to form thalamocortical assembloids, thalamic and cortical organoids formed reciprocal long-range axonal projections and reciprocal synapses detectable by light and electron microscopy, respectively. Using whole-cell patch-clamp electrophysiology and two-photon imaging, we characterized glutamatergic synaptic transmission. Thalamocortical and corticothalamic synapses displayed short-term plasticity analogous to that in animal models. LTP and LTD were reliably induced at both synapses; however, their mechanisms differed from those previously described in rodents. Thus, thalamocortical assembloids provide a model system for exploring synaptic plasticity in human circuits.

2.
Neuropsychopharmacology ; 48(12): 1821-1831, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37208501

RESUMEN

Impulsive choice has enduring trait-like characteristics and is defined by preference for small immediate rewards over larger delayed ones. Importantly, it is a determining factor in the development and persistence of substance use disorder (SUD). Emerging evidence from human and animal studies suggests frontal cortical regions exert influence over striatal reward processing areas during decision-making in impulsive choice or delay discounting (DD) tasks. The goal of this study was to examine how these circuits are involved in decision-making in animals with defined trait impulsivity. To this end, we trained adolescent male rats to stable behavior on a DD procedure and then re-trained them in adulthood to assess trait-like, conserved impulsive choice across development. We then used chemogenetic tools to selectively and reversibly target corticostriatal projections during performance of the DD task. The prelimbic region of the medial prefrontal cortex (mPFC) was injected with a viral vector expressing inhibitory designer receptors exclusively activated by designer drugs (Gi-DREADD), and then mPFC projections to the nucleus accumbens core (NAc) were selectively suppressed by intra-NAc administration of the Gi-DREADD actuator clozapine-n-oxide (CNO). Inactivation of the mPFC-NAc projection elicited a robust increase in impulsive choice in rats with lower vs. higher baseline impulsivity. This demonstrates a fundamental role for mPFC afferents to the NAc during choice impulsivity and suggests that maladaptive hypofrontality may underlie decreased executive control in animals with higher levels of choice impulsivity. Results such as these may have important implications for the pathophysiology and treatment of impulse control, SUDs, and related psychiatric disorders.


Asunto(s)
Conducta Impulsiva , Corteza Prefrontal , Adolescente , Ratas , Masculino , Humanos , Animales , Conducta Impulsiva/fisiología , Corteza Prefrontal/fisiología , Recompensa , Núcleo Accumbens/fisiología , Conducta de Elección/fisiología
3.
Cell ; 185(21): 3877-3895.e21, 2022 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-36152627

RESUMEN

Williams-Beuren syndrome (WBS) is a rare disorder caused by hemizygous microdeletion of ∼27 contiguous genes. Despite neurodevelopmental and cognitive deficits, individuals with WBS have spared or enhanced musical and auditory abilities, potentially offering an insight into the genetic basis of auditory perception. Here, we report that the mouse models of WBS have innately enhanced frequency-discrimination acuity and improved frequency coding in the auditory cortex (ACx). Chemogenetic rescue showed frequency-discrimination hyperacuity is caused by hyperexcitable interneurons in the ACx. Haploinsufficiency of one WBS gene, Gtf2ird1, replicated WBS phenotypes by downregulating the neuropeptide receptor VIPR1. VIPR1 is reduced in the ACx of individuals with WBS and in the cerebral organoids derived from human induced pluripotent stem cells with the WBS microdeletion. Vipr1 deletion or overexpression in ACx interneurons mimicked or reversed, respectively, the cellular and behavioral phenotypes of WBS mice. Thus, the Gtf2ird1-Vipr1 mechanism in ACx interneurons may underlie the superior auditory acuity in WBS.


Asunto(s)
Corteza Auditiva/fisiología , Síndrome de Williams/fisiopatología , Animales , Corteza Auditiva/citología , Modelos Animales de Enfermedad , Humanos , Células Madre Pluripotentes Inducidas , Interneuronas/citología , Interneuronas/fisiología , Ratones , Fenotipo , Transactivadores/genética , Síndrome de Williams/genética
4.
J Physiol ; 600(9): 2189-2202, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35332539

RESUMEN

Inhibitory fast-spiking interneurons in the dorsal striatum regulate actions and action strategies, including habits. Fast-spiking interneurons are widely believed to synchronize their firing due to the electrical synapses formed between these neurons. However, neuronal modelling data suggest convergent cortical input may also drive synchrony in fast-spiking interneuron networks. To better understand how fast-spiking interneuron synchrony arises, we performed dual whole-cell patch clamp electrophysiology experiments to inform a simple Bayesian network modelling cortico-fast-spiking interneuron circuitry. Dual whole-cell patch clamp electrophysiology revealed that while responsivity to corticostriatal input activation was high in fast-spiking interneurons, few of these neurons exhibited electrical coupling in adult mice. In simulations of a cortico-fast-spiking interneuron network informed by these data, the degree of glutamatergic cortical convergence onto fast-spiking interneurons significantly increased fast-spiking interneuron synchronization while manipulations of electrical coupling between these neurons exerted relatively little impact. These results suggest that the primary source of functional coordination of fast-spiking interneuron activity in adulthood arises from convergent corticostriatal input activation. KEY POINTS: Electrical synapses between striatal fast-spiking interneurons in adult mice occur in ∼8% of assayed pairs. Coincident, convergent cortical input onto fast-spiking interneurons significantly contributes to fast-spiking interneuron synchrony. Electrical synapses between fast-spiking interneurons provide only minor enhancement of fast-spiking interneuron synchrony. These results suggest a mechanism by which adult mouse fast-spiking interneurons of the striatum synchronize in the face of declining expression of the electrical synapse-forming connexin-36 protein.


Asunto(s)
Cuerpo Estriado , Interneuronas , Potenciales de Acción/fisiología , Animales , Teorema de Bayes , Cuerpo Estriado/fisiología , Interneuronas/fisiología , Ratones , Neuronas
5.
Nat Aging ; 2(10): 923-940, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36636325

RESUMEN

Recent proteome and transcriptome profiling of Alzheimer's disease (AD) brains reveals RNA splicing dysfunction and U1 small nuclear ribonucleoprotein (snRNP) pathology containing U1-70K and its N-terminal 40-KDa fragment (N40K). Here we present a causative role of U1 snRNP dysfunction to neurodegeneration in primary neurons and transgenic mice (N40K-Tg), in which N40K expression exerts a dominant-negative effect to downregulate full-length U1-70K. N40K-Tg recapitulates N40K insolubility, erroneous splicing events, neuronal degeneration and cognitive impairment. Specifically, N40K-Tg shows the reduction of GABAergic synapse components (e.g., the GABA receptor subunit of GABRA2), and concomitant postsynaptic hyperexcitability that is rescued by a GABA receptor agonist. Crossing of N40K-Tg and the 5xFAD amyloidosis model indicates that the RNA splicing defect synergizes with the amyloid cascade to remodel the brain transcriptome and proteome, deregulate synaptic proteins, and accelerate cognitive decline. Thus, our results support the contribution of U1 snRNP-mediated splicing dysfunction to AD pathogenesis.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Animales , Ratones , Ribonucleoproteína Nuclear Pequeña U1/genética , Enfermedad de Alzheimer/genética , Proteoma/genética , Empalme del ARN/genética , Disfunción Cognitiva/genética
6.
Front Neural Circuits ; 15: 769969, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34955759

RESUMEN

Schizophrenia is a severe, chronic psychiatric disorder that devastates the lives of millions of people worldwide. The disease is characterized by a constellation of symptoms, ranging from cognitive deficits, to social withdrawal, to hallucinations. Despite decades of research, our understanding of the neurobiology of the disease, specifically the neural circuits underlying schizophrenia symptoms, is still in the early stages. Consequently, the development of therapies continues to be stagnant, and overall prognosis is poor. The main obstacle to improving the treatment of schizophrenia is its multicausal, polygenic etiology, which is difficult to model. Clinical observations and the emergence of preclinical models of rare but well-defined genomic lesions that confer substantial risk of schizophrenia (e.g., 22q11.2 microdeletion) have highlighted the role of the thalamus in the disease. Here we review the literature on the molecular, cellular, and circuitry findings in schizophrenia and discuss the leading theories in the field, which point to abnormalities within the thalamus as potential pathogenic mechanisms of schizophrenia. We posit that synaptic dysfunction and oscillatory abnormalities in neural circuits involving projections from and within the thalamus, with a focus on the thalamocortical circuits, may underlie the psychotic (and possibly other) symptoms of schizophrenia.


Asunto(s)
Síndrome de DiGeorge , Esquizofrenia , Síndrome de DiGeorge/genética , Humanos , Esquizofrenia/genética , Tálamo
7.
Brain Struct Funct ; 224(7): 2567-2576, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31243530

RESUMEN

Striatal fast-spiking interneurons (FSIs) potently inhibit the output neurons of the striatum and, as such, powerfully modulate action learning. Through electrical synaptic coupling, FSIs are theorized to temporally coordinate their activity. This has important implications for their ability to temporally summate inhibition on downstream striatal projection neurons. While some in vivo single-unit electrophysiological recordings of putative FSIs support coordinated firing, others do not. Moreover, it is unclear as to what aspect of action FSIs encode. To address this, we used in vivo calcium imaging of genetically identified FSIs in freely moving mice and applied machine learning analyses to decipher the relationship between FSI activity and movement. We report that FSIs exhibit ensemble activity that encodes the speed of action sub-components, including ambulation and head movements. These results suggest FSI population dynamics fit within a Hebbian model for ensemble inhibition of striatal output guiding action.


Asunto(s)
Potenciales de Acción/fisiología , Cuerpo Estriado/fisiología , Interneuronas/fisiología , Neuronas/fisiología , Animales , Femenino , Masculino , Ratones Transgénicos , Neostriado/fisiología
8.
Neuropsychopharmacology ; 44(6): 1114-1122, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30758322

RESUMEN

The nucleus accumbens is a critical integration center for reward-related circuitry and is comprised primarily of medium spiny projection neurons. The dynamic balance of excitation and inhibition onto medium spiny neurons determines the output of this structure. While nucleus accumbens excitatory synaptic plasticity is well-characterized, inhibitory synaptic plasticity mechanisms and their potential relevance to shaping motivated behaviors is poorly understood. Here we report the discovery of long-term depression of inhibitory synaptic transmission in the mouse nucleus accumbens core. This long-term depression is postsynaptically expressed, tropomyosin kinase B (TrkB) receptor-mediated, and augmented in the presence of ethanol. Our findings support the emerging view that TrkB signaling regulates inhibitory synaptic plasticity and suggest this mechanism in the nucleus accumbens as a target for ethanol modulation of reward.


Asunto(s)
Depresores del Sistema Nervioso Central/farmacología , Etanol/farmacología , Depresión Sináptica a Largo Plazo , Glicoproteínas de Membrana/metabolismo , Inhibición Neural , Núcleo Accumbens , Proteínas Tirosina Quinasas/metabolismo , Transducción de Señal , Animales , Femenino , Depresión Sináptica a Largo Plazo/efectos de los fármacos , Depresión Sináptica a Largo Plazo/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Inhibición Neural/efectos de los fármacos , Inhibición Neural/fisiología , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/fisiología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
9.
Cell Rep ; 26(6): 1389-1398.e3, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30726725

RESUMEN

Glutamatergic projections of the thalamic rostral intralaminar nuclei of the thalamus (rILN) innervate the dorsal striatum (DS) and are implicated in dopamine (DA)-dependent incubation of drug seeking. However, the mechanism by which rILN signaling modulates reward seeking and striatal DA release is unknown. We find that activation of rILN inputs to the DS drives cholinergic interneuron burst-firing behavior and DA D2 receptor-dependent post-burst pauses in cholinergic interneuron firing. In vivo, optogenetic activation of this pathway drives reinforcement in a DA D1 receptor-dependent manner, and chemogenetic suppression of the rILN reduces dopaminergic nigrostriatal terminal activity as measured by fiber photometry. Altogether, these data provide evidence that the rILN activates striatal cholinergic interneurons to enhance the pursuit of reward through local striatal DA release and introduce an additional level of complexity in our understanding of striatal DA signaling.


Asunto(s)
Cuerpo Estriado/fisiología , Dopamina/metabolismo , Recompensa , Tálamo/fisiología , Animales , Cuerpo Estriado/metabolismo , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Optogenética , Sustancia Negra/metabolismo , Sustancia Negra/fisiología , Tálamo/metabolismo
10.
Curr Opin Neurobiol ; 54: 83-89, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30286407

RESUMEN

Cortical circuits are particularly sensitive to incoming sensory information during well-defined intervals of postnatal development called 'critical periods'. The critical period for cortical plasticity closes in adults, thus restricting the brain's ability to indiscriminately store new sensory information. For example, children acquire language in an exposure-based manner, whereas learning language in adulthood requires more effort and attention. It has been suggested that pairing sounds with the activation of neuromodulatory circuits involved in attention reopens this critical period. Here, we review two critical period hypotheses related to neuromodulation: cortical disinhibition and thalamic adenosine. We posit that these mechanisms co-regulate the critical period for auditory cortical plasticity. We also discuss ways to reopen this period and rejuvenate cortical plasticity in adults.


Asunto(s)
Encéfalo/citología , Período Crítico Psicológico , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Rejuvenecimiento/fisiología , Animales , Encéfalo/fisiología , Humanos , Neurotransmisores/metabolismo
11.
Neuropharmacology ; 144: 1-8, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30321611

RESUMEN

Decades of work in Aplysia californica established the general rule that principles of synaptic plasticity and their molecular mechanisms are evolutionarily conserved from mollusks to mammals. However, an exquisitely sensitive, activity-dependent homosynaptic mechanism that protects against the depression of neurotransmitter release in Aplysia sensory neuron terminals has, to date, not been uncovered in other animals, including mammals. Here, we discover that depression at a mammalian synapse that is implicated in habit formation and habit learning acceleration by ethanol, the fast-spiking interneuron (FSI) to medium spiny principal projection neuron (MSN) synapse of the dorsolateral striatum, is subject to this type of synaptic protection. We show that this protection against synaptic depression is calcium- and PDZ domain interaction-dependent. These findings support activity dependent protection against synaptic depression as an Aplysia-like synaptic switch in mammals that may represent a leveraging point for treating alcohol use disorders.


Asunto(s)
Depresores del Sistema Nervioso Central/farmacología , Cuerpo Estriado/fisiología , Etanol/farmacología , Hábitos , Plasticidad Neuronal/fisiología , Sinapsis/fisiología , Animales , Aplysia/fisiología , Calcio/metabolismo , Cuerpo Estriado/citología , Cuerpo Estriado/efectos de los fármacos , Femenino , Masculino , Ratones Transgénicos , Inhibición Neural/efectos de los fármacos , Inhibición Neural/fisiología , Plasticidad Neuronal/efectos de los fármacos , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/fisiología , Dominios PDZ , Proteína Quinasa C/metabolismo , Sinapsis/efectos de los fármacos , Técnicas de Cultivo de Tejidos
12.
J Neurosci ; 38(29): 6597-6607, 2018 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-29941445

RESUMEN

The prevalence of nicotine dependence is higher than that for any other substance abuse disorder; still, the underlying mechanisms are not fully established. To this end, we studied acute effects by nicotine on neurotransmission in the dorsolateral striatum, a key brain region with respect to the formation of habits. Electrophysiological recordings in acutely isolated brain slices from rodent showed that nicotine (10 nm to 10 µm) produced an LTD of evoked field potentials. Current-clamp recordings revealed no significant effect by nicotine on membrane voltage or action potential frequency, indicating that the effect by nicotine is primarily synaptic. Nicotine did not modulate sIPSCs, or the connectivity between fast-spiking interneurons and medium spiny neurons, as assessed by whole-cell recordings combined with optogenetics. However, the frequency of sEPSCs was significantly depressed by nicotine. The effect by nicotine was mimicked by agonists targeting α7- or α4-containing nAChRs and blocked in slices pretreated with a mixture of antagonists targeting these receptor subtypes. Nicotine-induced LTD was furthermore inhibited by dopamine D2 receptor antagonist and occluded by D2 receptor agonist. In addition, modulation of cholinergic neurotransmission suppressed the responding to nicotine, which might reflect upon the postulated role for nAChRs as a presynaptic filter to differentially govern dopamine release depending on neuronal activity. Nicotine-induced suppression of excitatory inputs onto medium spiny neurons may promote nicotine-induced locomotor stimulation and putatively initiate neuroadaptations that could contribute to the transition toward compulsive drug taking.SIGNIFICANCE STATEMENT To decrease smoking, prevalence factors that may contribute to the development of nicotine addiction need to be identified. The data presented here show that nicotine suppresses striatal neurotransmission by selectively reducing the frequency of excitatory inputs to medium spiny neurons (MSNs) while rendering excitability, inhibitory neurotransmission, and fast-spiking interneuron-MSN connectivity unaltered. In addition, we show that the effect displayed by nicotine outlasts the presence of the drug, which could be fundamental for the addictive properties of nicotine. Considering the inhibitory tone displayed by MSNs on dopaminergic cell bodies and local terminals, nicotine-induced long-lasting depression of striatal output could play a role in behavioral transformations associated with nicotine use, and putatively elicit neuroadaptations underlying compulsive drug-seeking habits.


Asunto(s)
Cuerpo Estriado/efectos de los fármacos , Neuronas/efectos de los fármacos , Nicotina/farmacología , Agonistas Nicotínicos/farmacología , Receptores Nicotínicos/metabolismo , Transmisión Sináptica/efectos de los fármacos , Animales , Cuerpo Estriado/fisiología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Neuronas/fisiología , Ratas , Ratas Wistar , Transmisión Sináptica/fisiología , Tabaquismo/metabolismo , Tabaquismo/fisiopatología
13.
Neuron ; 96(6): 1327-1341.e6, 2017 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-29268097

RESUMEN

Altered brain energy homeostasis is a key adaptation occurring in the cocaine-addicted brain, but the effect of cocaine on the fundamental source of energy, mitochondria, is unknown. We demonstrate an increase of dynamin-related protein-1 (Drp1), the mitochondrial fission mediator, in nucleus accumbens (NAc) after repeated cocaine exposure and in cocaine-dependent individuals. Mdivi-1, a demonstrated fission inhibitor, blunts cocaine seeking and locomotor sensitization, while blocking c-Fos induction and excitatory input onto dopamine receptor-1 (D1) containing NAc medium spiny neurons (MSNs). Drp1 and fission promoting Drp1 are increased in D1-MSNs, consistent with increased smaller mitochondria in D1-MSN dendrites after repeated cocaine. Knockdown of Drp1 in D1-MSNs blocks drug seeking after cocaine self-administration, while enhancing the fission promoting Drp1 enhances seeking after long-term abstinence from cocaine. We demonstrate a role for altered mitochondrial fission in the NAc, during early cocaine abstinence, suggesting potential therapeutic treatment of disrupting mitochondrial fission in cocaine addiction.


Asunto(s)
Cocaína/farmacología , Neuronas Dopaminérgicas/efectos de los fármacos , Dinaminas/metabolismo , Locomoción/efectos de los fármacos , Mitocondrias/metabolismo , Receptores de Dopamina D1/metabolismo , Animales , Cocaína/administración & dosificación , Condicionamiento Operante/efectos de los fármacos , Condicionamiento Operante/fisiología , Inhibidores de Captación de Dopamina/administración & dosificación , Inhibidores de Captación de Dopamina/farmacología , Neuronas Dopaminérgicas/ultraestructura , Dinaminas/genética , Inhibidores Enzimáticos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Locomoción/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitocondrias/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Plasticidad Neuronal/genética , Núcleo Accumbens/citología , Quinazolinonas/farmacología , Receptores de Dopamina D1/genética , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Autoadministración
14.
Neuropsychopharmacology ; 41(7): 1831-40, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26758662

RESUMEN

The dorsolateral striatum mediates habit formation, which is expedited by exposure to alcohol. Across species, alcohol exposure disinhibits the DLS by dampening GABAergic transmission onto this structure's principal medium spiny projection neurons (MSNs), providing a potential mechanistic basis for habitual alcohol drinking. However, the molecular and circuit components underlying this disinhibition remain unknown. To examine this, we used a combination of whole-cell patch-clamp recordings and optogenetics to demonstrate that ethanol potently depresses both MSN- and fast-spiking interneuron (FSI)-MSN GABAergic synaptic transmission in the DLS. Concentrating on the powerfully inhibitory FSI-MSN synapse, we further show that acute exposure of ethanol (50 mM) to striatal slices activates delta opioid receptors that reside on FSI axon terminals and negatively couple to adenylyl cyclase to induce a long-term depression of GABA release onto both direct and indirect pathway MSNs. These findings elucidate a mechanism through which ethanol may globally disinhibit the DLS.


Asunto(s)
Depresores del Sistema Nervioso Central/farmacología , Cuerpo Estriado/citología , Etanol/farmacología , Neuronas/efectos de los fármacos , Terminales Presinápticos/efectos de los fármacos , Receptores Opioides delta/metabolismo , Analgésicos Opioides/farmacología , Animales , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Antagonistas de Aminoácidos Excitadores/farmacología , Guanosina Difosfato/análogos & derivados , Guanosina Difosfato/farmacología , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Potenciales Postsinápticos Inhibidores/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Antagonistas de Narcóticos/farmacología , Parvalbúminas/genética , Parvalbúminas/metabolismo , Terminales Presinápticos/metabolismo , Proteínas RGS/genética , Proteínas RGS/metabolismo , Receptor Cannabinoide CB1/antagonistas & inhibidores , Receptores Opioides delta/antagonistas & inhibidores , Tionucleótidos/farmacología , Ácido gamma-Aminobutírico/metabolismo
15.
Cereb Cortex ; 24(4): 968-77, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23236209

RESUMEN

Schizophrenia is characterized by alterations in cortico-limbic processes believed to involve modifications in activity within the prefrontal cortex (PFC) and the hippocampus. The nucleus accumbens (NAc) integrates information from these 2 brain regions and is involved in cognitive and psychomotor functions that are disrupted in schizophrenia, indicating an important role for this structure in the pathophysiology of this disorder. In this study, we used in vivo electrophysiological recordings from the NAc and the PFC of adult rats and the MAM developmental disruption rodent model of schizophrenia to explore the influence of the medial PFC on the hippocampal-accumbens pathway. We found that, in MAM-treated rats, tetanization of hippocampal inputs to the NAc produce opposite synaptic plasticity compared with controls, which is a consequence of alterations in the hippocampal-mPFC pathway. Moreover, we show that administration of the D2-receptor-blocking antipsychotic drug sulpiride either systemically or directly into the mPFC reverses the alterations in the MAM rat. Therefore, specific disruptions in cortical and hippocampal inputs in the MAM-treated rat abnormally alter plasticity in subcortical structures. Moreover, our results suggest that, in the presence of antipsychotic drugs, the disrupted plasticities are normalized, supporting a role for this mechanism in antipsychotic drug action in schizophrenia.


Asunto(s)
Hipocampo/patología , Plasticidad Neuronal/fisiología , Núcleo Accumbens/patología , Corteza Prefrontal/patología , Esquizofrenia/patología , Sinapsis/patología , Análisis de Varianza , Animales , Modelos Animales de Enfermedad , Femenino , Masculino , Acetato de Metilazoximetanol/toxicidad , Vías Nerviosas/patología , Neuronas/fisiología , Neurotoxinas/toxicidad , Embarazo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Ratas , Ratas Sprague-Dawley , Esquizofrenia/etiología
16.
J Neurosci ; 33(43): 16865-73, 2013 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-24155293

RESUMEN

The ventral tegmental area (VTA) has been implicated in a number of psychiatric disorders, including schizophrenia, depression, and bipolar disorder. One major regulator of the mesolimbic dopaminergic system is the medial prefrontal cortex (mPFC), which makes direct and indirect connections to the hippocampus and amygdala, as well as directly to the VTA. The mPFC is comprised of two subregions: the infralimbic and prelimbic cortices (ilPFC and plPFC). However, the specific roles of these subregions in regulating VTA dopamine activity have remained unclear. In this study, we aim to clarify this role and to examine the divergent neuranatomical circuits by which the mPFC regulates VTA activity. Using in vivo extracellular recordings in rats, we tested the effects of pharmacological activation (with NMDA) and inactivation (with TTX) of the ilPFC and plPFC on dopamine neuron activity, and tested the roles of the ventral subiculum (vSub) and basolateral amygdala in this process. We found that the ilPFC exerts a bidirectional control of VTA dopamine neurons, which are differentially modulated through the vSub and the basolateral amygdala. Specifically, activation or inactivation of the ilPFC attenuated or activated dopamine neuron population activity, respectively. Furthermore, dopamine activation depended on the ventral hippocampus and inactivation on the amygdala. In contrast, only inactivation of the plPFC altered dopamine neuron activity. These data indicate that the mPFC has the ability to uniquely fine-tune dopaminergic activity in the VTA. Furthermore, the data presented here suggest that the ilPFC may have a role in the pathophysiology of psychiatric disorders.


Asunto(s)
Amígdala del Cerebelo/fisiología , Neuronas Dopaminérgicas/fisiología , Hipocampo/fisiología , Red Nerviosa/fisiología , Corteza Prefrontal/fisiología , Potenciales de Acción , Amígdala del Cerebelo/citología , Animales , Agonistas de Aminoácidos Excitadores/farmacología , Hipocampo/citología , Masculino , N-Metilaspartato/farmacología , Red Nerviosa/citología , Red Nerviosa/efectos de los fármacos , Corteza Prefrontal/citología , Ratas , Ratas Sprague-Dawley , Bloqueadores de los Canales de Sodio/farmacología , Tetrodotoxina/farmacología , Área Tegmental Ventral/citología , Área Tegmental Ventral/fisiología
17.
Int J Neuropsychopharmacol ; 16(3): 507-12, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23067577

RESUMEN

The nucleus accumbens (NAc) receives converging inputs from the medial prefrontal cortex (mPFC) and the hippocampus which have competitive interactions in the NAc to influence motivational drive. We have previously shown altered synaptic plasticity in the hippocampal-NAc pathway in the methylazoxymethanol acetate (MAM) developmental model of schizophrenia in rodents that is dependent on cortical inputs. Thus, because mPFC-hippocampal balance is known to be partially altered in this model, we investigated potential pathological changes in the hippocampal influence over cortex-driven NAc spike activity. Here we show that the reciprocal interaction between the hippocampus and mPFC is absent in MAM animals but is able to be reinstated with administration of the antipsychotic drug, sulpiride. The lack of interaction between these structures in this model could explain the attentional deficits in schizophrenia patients and shed light onto their inability to focus on a single task.


Asunto(s)
Antipsicóticos/uso terapéutico , Modelos Animales de Enfermedad , Hipocampo/fisiología , Corteza Prefrontal/fisiología , Esquizofrenia/tratamiento farmacológico , Sulpirida/uso terapéutico , Animales , Antipsicóticos/farmacología , Femenino , Hipocampo/efectos de los fármacos , Potenciación a Largo Plazo/efectos de los fármacos , Potenciación a Largo Plazo/fisiología , Masculino , Acetato de Metilazoximetanol/toxicidad , Corteza Prefrontal/efectos de los fármacos , Embarazo , Ratas , Ratas Sprague-Dawley , Esquizofrenia/inducido químicamente , Esquizofrenia/fisiopatología , Sulpirida/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...