Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
J Infect Dis ; 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38451247

RESUMEN

Current serological tests for HIV screening and confirmation of infection present challenges to the adoption of HIV vaccines. The detection of vaccine-induced HIV-1 antibodies in the absence of HIV-1 infection, referred to as vaccine-induced seropositivity/seroreactivity, confounds the interpretation of test results, causing misclassification of HIV-1 status with potential affiliated stigmatization. For HIV vaccines to be widely adopted with high community confidence and uptake, tests that are agnostic to vaccination status (i.e., only positive for true HIV-1 infection) of tested individuals are needed. Successful development and deployment of such tests will require HIV vaccine developers to work in concert with diagnostic developers. Such tests will need to match today's high-performance standards (accuracy, cost-effectiveness, simplicity) for use in both vaccinated and unvaccinated populations, especially in low- and middle-income countries with high HIV burden. Herein, we discuss the challenges and strategies for developing modified serological HIV tests for concurrent deployment with HIV vaccines.

2.
Front Immunol ; 14: 1215302, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37727795

RESUMEN

Introduction: In the absence of clinical efficacy data, vaccine protective effect can be extrapolated from animals to humans, using an immunological biomarker in humans that correlates with protection in animals, in a statistical approach called immunobridging. Such an immunobridging approach was previously used to infer the likely protective effect of the heterologous two-dose Ad26.ZEBOV, MVA-BN-Filo Ebola vaccine regimen. However, this immunobridging model does not provide information on how the persistence of the vaccine-induced immune response relates to durability of protection in humans. Methods and results: In both humans and non-human primates, vaccine-induced circulating antibody levels appear to be very stable after an initial phase of contraction and are maintained for at least 3.8 years in humans (and at least 1.3 years in non-human primates). Immunological memory was also maintained over this period, as shown by the kinetics and magnitude of the anamnestic response following re-exposure to the Ebola virus glycoprotein antigen via booster vaccination with Ad26.ZEBOV in humans. In non-human primates, immunological memory was also formed as shown by an anamnestic response after high-dose, intramuscular injection with Ebola virus, but was not sufficient for protection against Ebola virus disease at later timepoints due to a decline in circulating antibodies and the fast kinetics of disease in the non-human primates model. Booster vaccination within three days of subsequent Ebola virus challenge in non-human primates resulted in protection from Ebola virus disease, i.e. before the anamnestic response was fully developed. Discussion: Humans infected with Ebola virus may benefit from the anamnestic response to prevent disease progression, as the incubation time is longer and progression of Ebola virus disease is slower as compared to non-human primates. Therefore, the persistence of vaccine-induced immune memory could be considered as a potential correlate of long-term protection against Ebola virus disease in humans, without the need for a booster.


Asunto(s)
Vacunas contra el Virus del Ébola , Ebolavirus , Fiebre Hemorrágica Ebola , Animales , Humanos , Fiebre Hemorrágica Ebola/prevención & control , Memoria Inmunológica , Anticuerpos , Antígenos Virales
3.
Microbiol Spectr ; 11(3): e0071523, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37222611

RESUMEN

Vaccine-induced seroreactivity/positivity (VISR/P) poses a significant and common challenge to HIV vaccine implementation, as up to 95% of vaccine recipients may be misclassified as having HIV infection by current HIV screening and confirmatory serological assays. We investigated whether internal HIV proteins could be used to overcome VISR and discovered a set of 4 antigens (gp41 endodomain, p31 integrase, p17 matrix protein, and Nef) that are recognized by antibodies produced in individuals with HIV infection but not in vaccinated individuals. When evaluated in a multiplex double-antigen bridging ELISA, this antigen combination had specificities of 98.1% prevaccination and 97.1% postvaccination, demonstrating the assay is minimally impacted by vaccine-induced antibodies. The sensitivity was 98.5%, further increasing to 99.7% when p24 antigen testing was included. Results were similar across HIV-1 clades. Although more technical advancements will be desired, this research provides the groundwork for the development of new fourth-generation HIV tests unaffected by VISR. IMPORTANCE While the detection of HIV infection is accomplished by several methods, the most common are serological tests that detect host antibodies produced in response to viral infection. However, the use of current serological tests may present a significant challenge to the adoption of an HIV vaccine in the future because the antibodies to HIV antigens detected in currently available tests also tend to be included as antigens in the HIV vaccines in development. The use of these serological tests may thus result in the misclassification of vaccinated HIV-negative individuals, which can have potential for significant harms for individuals and could prevent the widespread adoption and implementation of HIV vaccines. Our study aimed to identify and evaluate target antigens for inclusion in new serological tests that can be used to identify HIV infections without interference from vaccine-induced antibodies but also fit within existing platforms for HIV diagnostics.


Asunto(s)
Vacunas contra el SIDA , Infecciones por VIH , VIH-1 , Humanos , Infecciones por VIH/diagnóstico , Anticuerpos Antivirales , Pruebas Serológicas/métodos
4.
Vaccines (Basel) ; 10(8)2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-36016151

RESUMEN

The Marburg virus (MARV) and Sudan virus (SUDV) belong to the filovirus family. The sporadic human outbreaks occur mostly in Africa and are characterized by an aggressive disease course with high mortality. The first case of Marburg virus disease in Guinea in 2021, together with the increased frequency of outbreaks of Ebola virus (EBOV), which is also a filovirus, accelerated the interest in potential prophylactic vaccine solutions against multiple filoviruses. We previously tested a two-dose heterologous vaccine regimen (Ad26.Filo, MVA-BN-Filo) in non-human primates (NHP) and showed a fully protective immune response against both SUDV and MARV in addition to the already-reported protective effect against EBOV. The vaccine-induced glycoprotein (GP)-binding antibody levels appear to be good predictors of the NHP challenge outcome as indicated by the correlation between antibody levels and survival outcome as well as the high discriminatory capacity of the logistic model. Moreover, the elicited GP-specific binding antibody response against EBOV, SUDV, and MARV remains stable for more than 1 year. Overall, the NHP data indicate that the Ad26.Filo, MVA-BN-Filo regimen may be a good candidate for a prophylactic vaccination strategy in regions at high risk of filovirus outbreaks.

5.
NPJ Vaccines ; 5(1): 112, 2020 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-33335092

RESUMEN

It has been proven challenging to conduct traditional efficacy trials for Ebola virus (EBOV) vaccines. In the absence of efficacy data, immunobridging is an approach to infer the likelihood of a vaccine protective effect, by translating vaccine immunogenicity in humans to a protective effect, using the relationship between vaccine immunogenicity and the desired outcome in a suitable animal model. We here propose to infer the protective effect of the Ad26.ZEBOV, MVA-BN-Filo vaccine regimen with an 8-week interval in humans by immunobridging. Immunogenicity and protective efficacy data were obtained for Ad26.ZEBOV and MVA-BN-Filo vaccine regimens using a fully lethal EBOV Kikwit challenge model in cynomolgus monkeys (nonhuman primates [NHP]). The association between EBOV neutralizing antibodies, glycoprotein (GP)-binding antibodies, and GP-reactive T cells and survival in NHP was assessed by logistic regression analysis. Binding antibodies against the EBOV surface GP were identified as the immune parameter with the strongest correlation to survival post EBOV challenge, and used to infer the predicted protective effect of the vaccine in humans using published data from phase I studies. The human vaccine-elicited EBOV GP-binding antibody levels are in a range associated with significant protection against mortality in NHP. Based on this immunobridging analysis, the EBOV GP-specific-binding antibody levels elicited by the Ad26.ZEBOV, MVA-BN-Filo vaccine regimen in humans will likely provide protection against EBOV disease.

6.
Lancet HIV ; 7(6): e410-e421, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32078815

RESUMEN

BACKGROUND: Current efficacy studies of a mosaic HIV-1 prophylactic vaccine require four vaccination visits over one year, which is a complex regimen that could prove challenging for vaccine delivery at the community level, both for recipients and clinics. In this study, we evaluated the safety, tolerability, and immunogenicity of shorter, simpler regimens of trivalent Ad26.Mos.HIV expressing mosaic HIV-1 Env/Gag/Pol antigens combined with aluminium phosphate-adjuvanted clade C gp140 protein. METHODS: We did this randomised, double-blind, placebo-controlled phase 1 trial (IPCAVD010/HPX1002) at Beth Israel Deaconess Medical Center in Boston, MA, USA. We included healthy, HIV-uninfected participants (aged 18-50 years) who were considered at low risk for HIV infection and had not received any vaccines in the 14 days before study commencement. We randomly assigned participants via a computer-generated randomisation schedule and interactive web response system to one of three study groups (1:1:1) testing different regimens of trivalent Ad26.Mos.HIV (5 × 1010 viral particles per 0·5 mL) combined with 250 µg adjuvanted clade C gp140 protein. They were then assigned to treatment or placebo subgroups (5:1) within each of the three main groups. Participants and investigators were masked to treatment allocation until the end of the follow-up period. Group 1 received Ad26.Mos.HIV alone at weeks 0 and 12 and Ad26.Mos.HIV plus adjuvanted gp140 at weeks 24 and 48. Group 2 received Ad26.Mos.HIV plus adjuvanted gp140 at weeks 0, 12, and 24. Group 3 received Ad26.Mos.HIV alone at week 0 and Ad26.Mos.HIV plus adjuvanted gp140 at weeks 8 and 24. Participants in the control group received 0·5 mL of 0·9% saline. All study interventions were administered intramuscularly. The primary endpoints were Env-specific binding antibody responses at weeks 28, 52, and 72 and safety and tolerability of the vaccine regimens for 28 days after the injection. All participants who received at least one vaccine dose or placebo were included in the safety analysis; immunogenicity was analysed using the per-protocol population. The IPCAVD010/HPX1002 trial is registered with ClinicalTrials.gov, NCT02685020. We also did a parallel preclinical study in rhesus monkeys to test the protective efficacy of the shortened group 3 regimen. FINDINGS: Between March 7, 2016, and Aug 19, 2016, we randomly assigned 36 participants to receive at least one dose of study vaccine or placebo, ten to each vaccine group and two to the corresponding placebo group. 30 (83%) participants completed the full study, and six (17%) discontinued it prematurely because of loss to follow-up, withdrawal of consent, investigator decision, and an unrelated death from a motor vehicle accident. The two shortened regimens elicited comparable antibody titres against autologous clade C Env at peak immunity to the longer, 12-month regimen: geometric mean titre (GMT) 41 007 (95% CI 17 959-93 636) for group 2 and 49 243 (29 346-82 630) for group 3 at week 28 compared with 44 590 (19 345-102 781) for group 1 at week 52). Antibody responses remained increased (GMT >5000) in groups 2 and 3 at week 52 but were highest in group 1 at week 72. Antibody-dependent cellular phagocytosis, Env-specific IgG3, tier 1A neutralising activity, and broad cellular immune responses were detected in all groups. All vaccine regimens were well tolerated. Mild-to-moderate pain or tenderness at the injection site was the most commonly reported solicited local adverse event, reported by 28 vaccine recipients (93%) and two placebo recipients (33%). Grade 3 solicited systemic adverse events were reported by eight (27%) vaccine recipients and no placebo recipients; the most commonly reported grade 3 systemic symptoms were fatigue, myalgia, and chills. The shortened group 3 regimen induced comparable peak immune responses in 30 rhesus monkeys as in humans and resulted in an 83% (95% CI 38·7-95, p=0·004 log-rank test) reduction in per-exposure acquisition risk after six intrarectal challenges with SHIV-SF162P3 at week 54, more than 6 months after final vaccination. INTERPRETATION: Short, 6-month regimens of a mosaic HIV-1 prophylactic vaccine elicited robust HIV-specific immune responses that were similar to responses elicited by a longer, 12-month schedule. Preclinical data showed partial protective efficacy of one of the short vaccine regimens in rhesus monkeys. Further clinical studies are required to test the suitability of the shortened vaccine regimens in humans. Such shortened regimens would be valuable to increase vaccine delivery at the community level, particularly in resource-limited settings. FUNDING: Ragon Institute (Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University; Cambridge, MA, USA) and Janssen Vaccines & Prevention (Leiden, Netherlands).


Asunto(s)
Vacunas contra el SIDA/administración & dosificación , Adyuvantes Inmunológicos/administración & dosificación , Infecciones por VIH/prevención & control , Macaca mulatta/inmunología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/administración & dosificación , Vacunas contra el SIDA/efectos adversos , Vacunas contra el SIDA/inmunología , Adyuvantes Inmunológicos/efectos adversos , Adyuvantes Inmunológicos/química , Adulto , Animales , Método Doble Ciego , Femenino , Anticuerpos Anti-VIH/metabolismo , Infecciones por VIH/inmunología , VIH-1/inmunología , Humanos , Esquemas de Inmunización , Inyecciones Intramusculares , Masculino , Persona de Mediana Edad , Factores de Tiempo , Adulto Joven , Productos del Gen env del Virus de la Inmunodeficiencia Humana/efectos adversos , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología
7.
Am J Respir Crit Care Med ; 195(9): 1171-1180, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28060545

RESUMEN

RATIONALE: Administration of tuberculosis (TB) vaccines in participants with previous or current pulmonary TB may have the potential for causing harmful postvaccination immunologic (Koch-type) reactions. OBJECTIVES: To assess the safety and immunogenicity of three dose levels of the AERAS-402 live, replication-deficient adenovirus 35-vectored TB candidate vaccine, containing three mycobacterial antigens, in individuals with current or previous pulmonary TB. METHODS: We performed a phase II randomized, placebo-controlled, double-blinded dose-escalation study in an HIV-negative adult South African cohort (n = 72) with active pulmonary TB (on treatment for 1-4 mo) or pulmonary TB treated at least 12 months before study entry and considered cured. Safety endpoints included clinical assessment, flow volume curves, diffusing capacity of the lung for carbon monoxide, pulse oximetry, chest radiograph, and high-resolution thoracic computerized tomography scans. Cytokine expression by CD4 and CD8 T cells, after stimulation with Ag85A, Ag85B, and TB10.4 peptide pools, was examined by intracellular cytokine staining. MEASUREMENTS AND MAIN RESULTS: No apparent temporal or dose-related changes in clinical status (specifically acute, Koch phenomenon-like reactions), lung function, or radiology attributable to vaccine were observed. Injection site reactions were mild or moderate. Hematuria (by dipstick only) occurred in 25 (41%) of 61 AERAS-402 recipients and 3 (27%) of 11 placebo recipients, although no gross hematuria was reported. AERAS-402 induced robust CD8+ and moderate CD4+ T-cell responses, mainly to Ag85B in both vaccine groups. CONCLUSIONS: Administration of the AERAS-402 candidate TB vaccine to participants with current or previous pulmonary TB induced a robust immune response and is not associated with clinically significant pulmonary complications. Clinical trial registered with www.clinicaltrials.gov (NCT 02414828) and in the South African National Clinical Trials Register ( www.sanctr.gov.za DOH 27-0808-2060).


Asunto(s)
Vacunas contra la Tuberculosis/uso terapéutico , Tuberculosis Pulmonar/terapia , Adenoviridae , Adulto , Citocinas/metabolismo , Relación Dosis-Respuesta a Droga , Método Doble Ciego , Femenino , Humanos , Pulmón/diagnóstico por imagen , Mediciones del Volumen Pulmonar , Masculino , Persona de Mediana Edad , Oximetría , Radiografía Torácica , Tomografía Computarizada por Rayos X , Vacunas contra la Tuberculosis/administración & dosificación , Vacunas contra la Tuberculosis/efectos adversos , Vacunas contra la Tuberculosis/inmunología , Tuberculosis Pulmonar/diagnóstico por imagen , Tuberculosis Pulmonar/inmunología , Vacunas Atenuadas/efectos adversos , Vacunas Atenuadas/inmunología , Vacunas Atenuadas/uso terapéutico , Vacunas de ADN , Vacunas Sintéticas , Adulto Joven
8.
Sci Rep ; 6: 36355, 2016 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-27805026

RESUMEN

The development of a vaccine for Mycobacterium tuberculosis (Mtb) has been impeded by the absence of correlates of protective immunity. One correlate would be the ability of cells induced by vaccination to recognize the Mtb-infected cell. AERAS-402 is a replication-deficient serotype 35 adenovirus containing DNA expressing a fusion protein of Mtb antigens 85A, 85B and TB10.4. We undertook a phase I double-blind, randomized placebo controlled trial of vaccination with AERAS-402 following BCG. Analysis of the vaccine-induced immune response revealed strong antigen-specific polyfunctional CD4+ and CD8+ T cell responses. However, analysis of the vaccine-induced CD8+ T cells revealed that in many instances these cells did not recognize the Mtb-infected cell. Our findings highlight the measurement of vaccine-induced, polyfunctional T cells may not reflect the extent or degree to which these cells are capable of identifying the Mtb-infected cell and correspondingly, the value of detailed experimental medicine studies early in vaccine development.


Asunto(s)
Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos/metabolismo , Mycobacterium tuberculosis/inmunología , Vacunas contra la Tuberculosis/administración & dosificación , Adulto , Método Doble Ciego , Femenino , Humanos , Masculino , Vacunas contra la Tuberculosis/inmunología , Vacunación , Vacunas de ADN , Adulto Joven
9.
JAMA ; 315(15): 1610-23, 2016 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-27092831

RESUMEN

IMPORTANCE: Developing effective vaccines against Ebola virus is a global priority. OBJECTIVE: To evaluate an adenovirus type 26 vector vaccine encoding Ebola glycoprotein (Ad26.ZEBOV) and a modified vaccinia Ankara vector vaccine, encoding glycoproteins from Ebola virus, Sudan virus, Marburg virus, and Tai Forest virus nucleoprotein (MVA-BN-Filo). DESIGN, SETTING, AND PARTICIPANTS: Single-center, randomized, placebo-controlled, observer-blind, phase 1 trial performed in Oxford, United Kingdom, enrolling healthy 18- to 50-year-olds from December 2014; 8-month follow-up was completed October 2015. INTERVENTIONS: Participants were randomized into 4 groups, within which they were simultaneously randomized 5:1 to receive study vaccines or placebo. Those receiving active vaccines were primed with Ad26.ZEBOV (5 × 10(10) viral particles) or MVA-BN-Filo (1 × 10(8) median tissue culture infective dose) and boosted with the alternative vaccine 28 or 56 days later. A fifth, open-label group received Ad26.ZEBOV boosted by MVA-BN-Filo 14 days later. MAIN OUTCOMES AND MEASURES: The primary outcomes were safety and tolerability. All adverse events were recorded until 21 days after each immunization; serious adverse events were recorded throughout the trial. Secondary outcomes were humoral and cellular immune responses to immunization, as assessed by enzyme-linked immunosorbent assay and enzyme-linked immunospot performed at baseline and from 7 days after each immunization until 8 months after priming immunizations. RESULTS: Among 87 study participants (median age, 38.5 years; 66.7% female), 72 were randomized into 4 groups of 18, and 15 were included in the open-label group. Four participants did not receive a booster dose; 67 of 75 study vaccine recipients were followed up at 8 months. No vaccine-related serious adverse events occurred. No participant became febrile after MVA-BN-Filo, compared with 3 of 60 participants (5%; 95% CI, 1%-14%) receiving Ad26.ZEBOV in the randomized groups. In the open-label group, 4 of 15 Ad26.ZEBOV recipients (27%; 95% CI, 8%-55%) experienced fever. In the randomized groups, 28 of 29 Ad26.ZEBOV recipients (97%; 95% CI, 82%- 99.9%) and 7 of 30 MVA-BN-Filo recipients (23%; 95% CI, 10%-42%) had detectable Ebola glycoprotein-specific IgG 28 days after primary immunization. All vaccine recipients had specific IgG detectable 21 days postboost and at 8-month follow-up. Within randomized groups, at 7 days postboost, at least 86% of vaccine recipients showed Ebola-specific T-cell responses. CONCLUSIONS AND RELEVANCE: In this phase 1 study of healthy volunteers, immunization with Ad26.ZEBOV or MVA-BN-Filo did not result in any vaccine-related serious adverse events. An immune response was observed after primary immunization with Ad26.ZEBOV; boosting by MVA-BN-Filo resulted in sustained elevation of specific immunity. These vaccines are being further assessed in phase 2 and 3 studies. TRIAL REGISTRATION: clinicaltrials.gov Identifier: NCT02313077.


Asunto(s)
Vacunas contra el Virus del Ébola/efectos adversos , Vacunas contra el Virus del Ébola/inmunología , Ebolavirus/inmunología , Fiebre Hemorrágica Ebola/inmunología , Inmunidad Humoral , Adulto , Vacunas contra el Virus del Ébola/administración & dosificación , Ensayo de Inmunoadsorción Enzimática , Femenino , Vectores Genéticos , Voluntarios Sanos , Humanos , Inmunidad Celular , Inmunización Secundaria , Masculino , Marburgvirus/inmunología , Persona de Mediana Edad , Método Simple Ciego , Linfocitos T/inmunología , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/efectos adversos , Vacunas Sintéticas/inmunología , Vaccinia/inmunología , Proteínas Virales/inmunología
10.
Vaccine ; 34(21): 2430-2436, 2016 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-27026148

RESUMEN

In a Phase 1 trial, we evaluated the safety of AERAS-402, an adenovirus 35-vectored TB vaccine candidate expressing 3 Mycobacterium tuberculosis (Mtb) immunodominant antigens, in subjects with and without latent Mtb infection. HIV-negative, BCG-vaccinated Kenyan adults without evidence of tuberculosis, 10 QuantiFERON(®)-TB Gold In-Tube test (QFT-G)(-) and 10 QFT-G(+), were randomized 4:1 to receive AERAS-402 or placebo as two doses, on Days 0 and 56, with follow up to Day 182. There were no deaths, serious adverse events or withdrawals. For 1 AERAS-402 QFT-G(-) and 1 AERAS-402 QFT-G(+) subject, there were 3 self-limiting severe AEs of injection site pain: 1 after the first vaccination and 1 after each vaccination, respectively. Two additional severe AEs considered vaccine-related were reported after the first vaccination in AERAS-402 QFT-G(+) subjects: elevated blood creatine phosphokinase and neutropenia, the latter slowly improving but remaining abnormal until study end. AERAS-402 was not detected in urine or throat cultures for any subject. In intracellular cytokine staining studies, curtailed by technical issues, we saw modest CD4+ and CD8+ T cell responses to Mtb Ag85A/b peptide pools among both QFT-G(-) and (+) subjects, with trends in the CD4+ T cells suggestive of boosting after the second vaccine dose, slightly more so in QFT-G(+) subjects. CD4+ and CD8+ responses to Mtb antigen TB10.4 were minimal. Increases in Adenovirus 35 neutralizing antibodies from screening to end of study, seen in 50% of AERAS-402 recipients, were mostly minimal. This small study confirms acceptable safety and tolerability profiles for AERAS-402, in line with other Phase 1 studies of AERAS-402, now to include QFT-G(+) subjects.


Asunto(s)
Anticuerpos Antibacterianos/sangre , Vacuna BCG , Inmunogenicidad Vacunal , Tuberculosis Latente/inmunología , Mycobacterium tuberculosis/inmunología , Vacunas contra la Tuberculosis/efectos adversos , Vacunas contra la Tuberculosis/inmunología , Aciltransferasas/inmunología , Adulto , Anticuerpos Neutralizantes/sangre , Antígenos Bacterianos/inmunología , Vacuna BCG/inmunología , Proteínas Bacterianas/inmunología , Linfocitos T CD4-Positivos , Linfocitos T CD8-positivos , Creatina Quinasa/sangre , Citocinas/inmunología , Femenino , Voluntarios Sanos , Humanos , Interferón gamma/inmunología , Kenia/epidemiología , Masculino , Persona de Mediana Edad , Neutropenia/etiología , Tuberculosis/epidemiología , Tuberculosis/prevención & control , Vacunación , Vacunas de ADN , Adulto Joven
11.
PLoS One ; 10(11): e0141687, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26529238

RESUMEN

BACKGROUND: MVA85A and AERAS-402 are two clinically advanced viral vectored TB vaccine candidates expressing Mycobacterium tuberculosis antigens designed to boost BCG-induced immunity. Clinical trials with candidate malaria vaccines have demonstrated that adenoviral vector based priming immunisation, followed by MVA vector boost, induced high levels of immunity. We present the safety and immunogenicity results of the first clinical trial to evaluate this immunisation strategy in TB. METHODS: In this phase 1, open-label trial, 40 healthy previously BCG-vaccinated participants were enrolled into three treatment groups and vaccinated with 1 or 2 doses of AERAS-402 followed by MVA85A; or 3 doses of AERAS-402. RESULTS: Most related adverse events (AEs) were mild and there were no vaccine related serious AEs. Boosting AERAS-402 with MVA85A significantly increased Ag85A-specific T-cell responses from day of vaccination. Two priming doses of AERAS-402 followed by MVA85A boost, resulted in a significantly higher AUC post-peak Ag85A response compared to three doses of AERAS-402 and historical data with MVA85A vaccination alone. The frequency of CD8+ T-cells producing IFN-γ, TNF-α and IL-2 was highest in the group receiving two priming doses of AERAS-402 followed by MVA85A. CONCLUSIONS: Vaccination with AERAS-402 followed by MVA85A was safe and increased the durability of antigen specific T-cell responses and the frequency and polyfunctionality of CD8+ T-cells, which may be important in protection against TB. Further clinical trials with adenoviral prime-MVA85A boost regimens are merited to optimise vaccination intervals, dose and route of immunisation and to evaluate this strategy in the target population in TB high burden countries. TRIAL REGISTRATION: ClinicalTrials.gov NCT01683773.


Asunto(s)
Adenoviridae , Antígenos Bacterianos , Inmunización Secundaria , Mycobacterium bovis/inmunología , Mycobacterium tuberculosis/inmunología , Vacunas contra la Tuberculosis , Adolescente , Adulto , Antígenos Bacterianos/administración & dosificación , Antígenos Bacterianos/inmunología , Linfocitos T CD8-positivos/inmunología , Citocinas/inmunología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Vacunas contra la Tuberculosis/administración & dosificación , Vacunas contra la Tuberculosis/inmunología
12.
PLoS One ; 10(7): e0131571, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26148007

RESUMEN

METHODS: In an observer blind, phase 2 trial, 55 adults were randomized to receive one dose of Ad35.CS.01 vaccine followed by two doses of RTS,S/AS01 (ARR-group) or three doses of RTS,S/AS01 (RRR-group) at months 0, 1, 2 followed by controlled human malaria infection. RESULTS: ARR and RRR vaccine regimens were well tolerated. Efficacy of ARR and RRR groups after controlled human malaria infection was 44% (95% confidence interval 21%-60%) and 52% (25%-70%), respectively. The RRR-group had greater anti-CS specific IgG titers than did the ARR-group. There were higher numbers of CS-specific CD4 T-cells expressing > 2 cytokine/activation markers and more ex vivo IFN-γ enzyme-linked immunospots in the ARR-group than the RRR-group. Protected subjects had higher CS-specific IgG titers than non-protected subjects (geometric mean titer, 120.8 vs 51.8 EU/ml, respectively; P = .001). CONCLUSIONS: An increase in vaccine efficacy of ARR-group over RRR-group was not achieved. Future strategies to improve upon RTS,S-induced protection may need to utilize alternative highly immunogenic prime-boost regimens and/or additional target antigens. TRIAL REGISTRATION: ClinicalTrials.gov NCT01366534.


Asunto(s)
Vacunas contra la Malaria/inmunología , Malaria/inmunología , Malaria/prevención & control , Esporozoítos/inmunología , Anticuerpos Antiprotozoarios/inmunología , Formación de Anticuerpos/inmunología , Linfocitos T CD4-Positivos/inmunología , Método Doble Ciego , Humanos , Inmunización Secundaria/métodos , Inmunoglobulina G/inmunología , Pruebas Inmunológicas/métodos , Interferón gamma/inmunología , Vacunación/métodos
13.
Vaccine ; 33(15): 1890-6, 2015 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-25698492

RESUMEN

BACKGROUND: The safety and immunogenicity of a replication deficient adenovirus serotype 35 tuberculosis (TB) vaccine containing gene inserts for Antigens (Ag) 85A, Ag85B and TB10.4 (AERAS-402/AD35.TB-S) was evaluated in previously BCG vaccinated, HIV-infected South African adults with baseline CD4 counts >350 cells/mm(3). METHODS: Subjects were randomized (1:1) to receive two doses of either intramuscular AERAS-402/AD35.TB-S or placebo at month 0 and at month 1. Participants were monitored for adverse events 28 days after each vaccination and for serious adverse events over 12 months. CD4(+) and CD8(+) T-cell and antibody responses to vaccine antigens were evaluated post first and second vaccination. RESULTS: 26 subjects were randomly assigned to receive AERAS-402/AD35.TB-S (N=13) or placebo (N=13). The mean age was 29.0 years, all were Black-African, 88.5% were female, 46.2% were QuantiFERON Test (QFT) positive at baseline, and the median CD4 count was 559.5 cells/mm(3), all similar by treatment group. All subjects received their first vaccination and 24 subjects received their second vaccination. Injection site reactions and some systemic reactions were reported more commonly in the AERAS-402/AD35.TB-S versus placebo recipients. AERAS-402/AD35.TB-S did not appear to influence CD4 counts and HIV-1 viral load over the course of study follow-up. AERAS-402/AD35.TB-S induced a mixed CD4(+) T-cell and CD8(+) T-cell responses to Ag85B. The CD4(+) T-cell responses peaked to Ag85A and Ag85B 14 days after the second vaccination and had declined by Day 182. AERAS-402/AD35.TB-S predominantly induced CD4(+) T-cells expressing three (IFN-γ, TNF, IL-2) or two (IL-2 and TNF) cytokines, two weeks after the last vaccination, which did not differ by baseline Quantiferon test status. AERAS-402/AD35.TB-S induced strong Ag85A and Ag85B specific antibody responses, particularly after the second vaccination. CONCLUSION: AERAS-402/AD35.TB-S was well tolerated, safe and induced predominantly polyfunctional CD4(+) and CD8(+) T-cell responses to vaccine.


Asunto(s)
Antígenos Bacterianos/inmunología , Vacuna BCG/inmunología , Infecciones por VIH/inmunología , Vacunas contra la Tuberculosis/efectos adversos , Vacunas contra la Tuberculosis/inmunología , Tuberculosis/prevención & control , Adulto , Anticuerpos Antibacterianos/sangre , Recuento de Linfocito CD4 , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos , Método Doble Ciego , Femenino , Humanos , Inyecciones Intramusculares , Interferón gamma/inmunología , Interleucina-2/inmunología , Masculino , Persona de Mediana Edad , Mycobacterium tuberculosis/inmunología , Sudáfrica , Vacunas contra la Tuberculosis/administración & dosificación , Factor de Necrosis Tumoral alfa/inmunología , Vacunación , Vacunas de ADN , Carga Viral , Adulto Joven
14.
Hum Vaccin Immunother ; 10(8): 2199-210, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25424923

RESUMEN

Bacille Calmette-Guérin (BCG), the only licensed vaccine for the prevention of tuberculosis (TB), provides only limited protection against certain forms of Mycobacterium tuberculosis (Mtb) infection. While infection with Mtb can be treated with antibiotics, the therapy is expensive, toxic, and requires several months for treatment. In addition, the emergence of drug resistant strains limits the impact of antibiotics and underlines the importance of developing a more effective vaccine to control this disease. Given that pulmonary TB is the most common form of the disease, a vaccine capable of inducing lung-resident immunity may be advantageous for combating this infection. New advances in pulmonary delivery make this route of vaccination feasible and affordable. Here, we evaluate the safety and immunogenicity of an aerosolized Ad35-based vaccine, AERAS-402, delivered to the lungs in nonhuman primates as part of a GLP acute and chronic toxicology and safety study. In this study, animals received three high doses (1 x 10(11) vp) of AERAS-402 by inhalation via a nebulizer at 1-week intervals. Aerosol delivery of AERAS-402 resulted in an increase in relative lung weights as well as microscopic findings in the lungs, mediastinal lymph nodes, bronchus-associated lymphatic tissue, and the naso-oropharynx that were consistent with the induction of an immune response during the acute phase. These findings resolved by the chronic phase and were considered to be non-adverse. Furthermore, we observed transient vaccine-specific immune responses in the peripheral blood as well as sustained high-level polyfunctional CD4(+) and CD8(+) T cell responses in the bronchoalveolar lavage fluid of vaccinated nonhuman primates. The data suggest that pulmonary delivery of Ad35-based vaccines can be safe and can induce potent lung-resident immunity.


Asunto(s)
Aerosoles/administración & dosificación , Aerosoles/efectos adversos , Pulmón/inmunología , Linfocitos T/inmunología , Vacunas contra la Tuberculosis/efectos adversos , Vacunas contra la Tuberculosis/inmunología , Tuberculosis/prevención & control , Adenovirus Humanos/genética , Administración por Inhalación , Animales , Líquido del Lavado Bronquioalveolar/citología , Líquido del Lavado Bronquioalveolar/inmunología , Portadores de Fármacos/administración & dosificación , Femenino , Macaca mulatta , Masculino , Resultado del Tratamiento , Tuberculosis/inmunología , Vacunas contra la Tuberculosis/administración & dosificación , Vacunas de ADN
15.
Vaccine ; 32(45): 5908-17, 2014 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-25218194

RESUMEN

BACKGROUND: Efforts to reduce risk of tuberculosis disease in children include development of effective vaccines. Our aim was to test safety and immunogenicity of the new adenovirus 35-vectored tuberculosis vaccine candidate AERAS-402 in infants, administered as a boost following a prime with the Bacille Calmette-Guerin vaccine. METHODS: In a phase 1 randomised, double-blind, placebo-controlled, dose-escalation trial, BCG-vaccinated infants aged 6-9 months were sequentially assigned to four study groups, then randomized to receive an increasing dose-strength of AERAS-402, or placebo. The highest dose group received a second dose of vaccine or placebo 56 days after the first. The primary study outcome was safety. Whole blood intracellular cytokine staining assessed immunogenicity. RESULTS: Forty-two infants received AERAS-402 and 15 infants received placebo. During follow-up of 182 days, an acceptable safety profile was shown with no serious adverse events or discontinuations related to the vaccine. AERAS-402 induced a specific T cell response. A single dose of AERAS-402 induced CD4T cells predominantly expressing single IFN-γ whereas two doses induced CD4T cells predominantly expressing IFN-γ, TNF-α and IL-2 together. CD8T cells were induced and were more likely to be present after 2 doses of AERAS-402. CONCLUSIONS: AERAS-402 was safe and immunogenic in healthy infants previously vaccinated with BCG at birth. Administration of the highest dose twice may be the most optimal vaccination strategy, based on the induced immunity. Multiple differences in T cell responses when infants are compared with adults vaccinated with AERAS-402, in the same setting and using the same whole blood intracellular cytokine assay, suggest specific strategies may be important for vaccination for each population.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Vacunas contra la Tuberculosis/uso terapéutico , Tuberculosis/prevención & control , Vacuna BCG/administración & dosificación , Relación Dosis-Respuesta Inmunológica , Método Doble Ciego , Femenino , Humanos , Inmunización Secundaria , Lactante , Interferón gamma/inmunología , Interleucina-2/inmunología , Masculino , Vacunas contra la Tuberculosis/efectos adversos , Factor de Necrosis Tumoral alfa/inmunología , Vacunas de ADN
16.
J Gen Virol ; 95(Pt 7): 1574-1584, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24764357

RESUMEN

During the development of human adenovirus 35-derived replication-incompetent (rAd35) vaccine vectors for prevention of infectious diseases, we detected mutations in the terminal 8 nt of the inverted terminal repeats (ITRs) of rAd35. The switch from the plasmid-encoded sequence 5'-CATCATCA-3' to the alternative sequence 5'-CTATCTAT-3' in the ITRs was found to be a general in vitro propagation phenomenon, as shown for several vectors carrying different transgenes or being derived from different adenovirus serotypes. In each tested case, the plasmid-encoded ITR sequence changed to exactly the same alternative ITR sequence, 5'-CTATCTAT-3'. The outgrowth of this alternative ITR version should result from a growth advantage conferred by the alternative ITR sequence. Indeed, replication kinetics studies of rAd35 harbouring either the original or alternative ITR sequence confirmed an increase in replication speed for rAd35 vectors with the alternative ITR sequence. These findings can be applied to generate recombinant adenoviral vectors harbouring the alternative ITR sequence, which will facilitate the generation of genetically homogeneous seed virus batches. Moreover, vector production may be accelerated by taking advantage of the observed improved replication kinetics associated with the alternative ITR sequence.


Asunto(s)
Adenoviridae/fisiología , Secuencias Repetidas Terminales , Replicación Viral , Adenoviridae/genética , Animales , Línea Celular , Replicación del ADN , Vectores Genéticos , Humanos , Mutación , Plásmidos
17.
Vaccine ; 32(18): 2109-16, 2014 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-24556505

RESUMEN

Immunogens based on the human immunodeficiency virus type-1 (HIV-1) Envelope (Env) glycoprotein have to date failed to elicit potent and broadly neutralizing antibodies against diverse HIV-1 strains. An understudied area in the development of HIV-1 Env-based vaccines is the impact of various adjuvants on the stability of the Env immunogen and the magnitude of the induced humoral immune response. We hypothesize that optimal adjuvants for HIV-1 gp140 Env trimers will be those with high potency but also those that preserve structural integrity of the immunogen and those that have a straightforward path to clinical testing. In this report, we systematically evaluate the impact of 12 adjuvants on the stability and immunogenicity of a clade C (CZA97.012) HIV-1 gp140 trimer in guinea pigs and a subset in non-human primates. Oil-in-water emulsions (GLA-emulsion, Ribi, Emulsigen) resulted in partial aggregation and loss of structural integrity of the gp140 trimer. In contrast, alum (GLA-alum, Adju-Phos, Alhydrogel), TLR (GLA-aqueous, CpG, MPLA), ISCOM (Matrix M) and liposomal (GLA-liposomes, virosomes) adjuvants appeared to preserve trimer integrity as measured by size exclusion chromatography. However, multiple classes of adjuvants similarly augmented Env-specific binding and neutralizing antibody responses in guinea pigs and non-human primates.


Asunto(s)
Adyuvantes Inmunológicos/farmacología , Anticuerpos Anti-VIH/sangre , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología , Animales , Anticuerpos Neutralizantes/sangre , Formación de Anticuerpos , Femenino , Cobayas , Pruebas de Neutralización , Estabilidad Proteica , Productos del Gen env del Virus de la Inmunodeficiencia Humana/química
18.
PLoS One ; 8(11): e78679, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24244339

RESUMEN

BACKGROUND: Ad35.CS.01 is a pre-erythrocytic malaria candidate vaccine. It is a codon optimized nucleotide sequence representing the P. falciparum circumsporozoite (CS) surface antigen inserted in a replication deficient Adenovirus 35 backbone. A Phase 1a trial has been conducted in the USA in naïve adults and showed that the vaccine was safe. The aim of this study is to assess the safety and immunogenicity of ascending dosages in sub Saharan Africa. METHODS: A double blind, randomized, controlled, dose escalation, phase Ib trial was conducted in a rural area of Balonghin, the Saponé health district (Burkina Faso). Forty-eight healthy adults aged 18-45 years were randomized into 4 cohorts of 12 to receive three vaccine doses (day 0, 28 and 84) of 10(9), 10(10), 5X10(10), 10(11) vp of Ad35.CS.01 or normal saline by intra muscular injection. Subjects were monitored carefully during the 14 days following each vaccination for non serious adverse events. Severe and serious adverse events were collected throughout the participant study duration (12 months from the first vaccination). Humoral and cellular immune responses were measured on study days 0, 28, 56, 84, 112 and 140. RESULTS: Of the forty-eight subjects enrolled, forty-four (91.7%) received all three scheduled vaccine doses. Local reactions, all of mild severity, occurred in thirteen (27.1%) subjects. Severe (grade 3) laboratory abnormalities occurred in five (10.4%) subjects. One serious adverse event was reported and attributed to infection judged unrelated to vaccine. The vaccine induced both antibody titers and CD8 T cells producing IFNγ and TNFα with specificity to CS while eliciting modest neutralizing antibody responses against Ad35. CONCLUSION: Study vaccine Ad35.CS.01 at four different dose levels was well-tolerated and modestly immunogenic in this population. These results suggest that Ad35.CS.01 should be further investigated for preliminary efficacy in human challenge models and as part of heterologous prime-boost vaccination strategies. TRIAL REGISTRATION: ClinicalTrials.gov NCT01018459 http://clinicaltrials.gov/ct2/show/NCT01018459.


Asunto(s)
Adenoviridae , Inmunización Secundaria , Malaria Falciparum/inmunología , Malaria Falciparum/prevención & control , Plasmodium falciparum/inmunología , Proteínas Protozoarias/inmunología , Adolescente , Adulto , Burkina Faso , Relación Dosis-Respuesta Inmunológica , Método Doble Ciego , Femenino , Humanos , Malaria Falciparum/genética , Masculino , Persona de Mediana Edad , Plasmodium falciparum/genética , Proteínas Protozoarias/genética
19.
Clin Vaccine Immunol ; 18(5): 776-82, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21411600

RESUMEN

Various pre-erythrocyte malaria vaccines are currently in clinical development, and among these is the adenovirus serotype 35-based circumsporozoite (CS) vaccine produced on PER.C6 cells. Although the immunological correlate of protection against malaria remains to be established, the CS antibody titer is a good marker for evaluation of candidate vaccines. Here we describe the validation of an anti-Plasmodium falciparum circumsporozoite antibody enzyme-linked immunosorbent assay (ELISA) based on the binding of antibodies to a peptide antigen mimicking the CS repeat region. The interassay variability was determined to be below a coefficient of variation (CV) of 15%, and sensitivity was sufficient to detect low antibody titers in subjects from endemic regions. Antibody titers were in agreement with total antibody responses to the whole CS protein. Due to its simplicity and high performance, the ELISA is an easy and rapid method for assessment of pre-erythrocyte malaria vaccines based on CS.


Asunto(s)
Anticuerpos Antiprotozoarios/sangre , Antígenos de Protozoos , Técnicas de Laboratorio Clínico/métodos , Vacunas contra la Malaria/inmunología , Plasmodium falciparum/inmunología , Proteínas Protozoarias/inmunología , Adulto , Ensayo de Inmunoadsorción Enzimática/métodos , Humanos , Malaria Falciparum/prevención & control , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
20.
J Virol ; 85(9): 4222-33, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21325402

RESUMEN

The use of adenoviruses (Ad) as vaccine vectors against a variety of pathogens has demonstrated their capacity to elicit strong antibody and cell-mediated immune responses. Adenovirus serotype C vectors, such as Ad serotype 5 (Ad5), expressing Ebolavirus (EBOV) glycoprotein (GP), protect completely after a single inoculation at a dose of 10(10) viral particles. However, the clinical application of a vaccine based on Ad5 vectors may be hampered, since impairment of Ad5 vaccine efficacy has been demonstrated for humans and nonhuman primates with high levels of preexisting immunity to the vector. Ad26 and Ad35 segregate genetically from Ad5 and exhibit lower seroprevalence in humans, making them attractive vaccine vector alternatives. In the series of studies presented, we show that Ad26 and Ad35 vectors generate robust antigen-specific cell-mediated and humoral immune responses against EBOV GP and that Ad5 immune status does not affect the generation of GP-specific immune responses by these vaccines. We demonstrate partial protection against EBOV by a single-shot Ad26 vaccine and complete protection when this vaccine is boosted by Ad35 1 month later. Increases in efficacy are paralleled by substantial increases in T- and B-cell responses to EBOV GP. These results suggest that Ad26 and Ad35 vectors warrant further development as candidate vaccines for EBOV.


Asunto(s)
Adenovirus Humanos/inmunología , Portadores de Fármacos , Vacunas contra el Virus del Ébola/inmunología , Vectores Genéticos/inmunología , Fiebre Hemorrágica Ebola/prevención & control , Proteínas del Envoltorio Viral/inmunología , Adenovirus Humanos/genética , Animales , Anticuerpos Antivirales/sangre , Vacunas contra el Virus del Ébola/administración & dosificación , Fiebre Hemorrágica Ebola/inmunología , Linfocitos/inmunología , Macaca fascicularis , Vacunación/métodos , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología , Proteínas del Envoltorio Viral/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...