Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 14: 1170880, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37250061

RESUMEN

The successful enzymatic degradation of polyester substrates has fueled worldwide investigation into the treatment of plastic waste using bio-based processes. Within this realm, marine-associated microorganisms have emerged as a promising source of polyester-degrading enzymes. In this work, we describe the hydrolysis of the synthetic polymer PET by SM14est, a polyesterase which was previously identified from Streptomyces sp. SM14, an isolate of the marine sponge Haliclona simulans. The PET hydrolase activity of purified SM14est was assessed using a suspension-based assay and subsequent analysis of reaction products by UV-spectrophotometry and RP-HPLC. SM14est displayed a preference for high salt conditions, with activity significantly increasing at sodium chloride concentrations from 100 mM up to 1,000 mM. The initial rate of PET hydrolysis by SM14est was determined to be 0.004 s-1 at 45°C, which was increased by 5-fold to 0.02 s-1 upon addition of 500 mM sodium chloride. Sequence alignment and structural comparison with known PET hydrolases, including the marine halophile PET6, and the highly efficient, thermophilic PHL7, revealed conserved features of interest. Based on this work, SM14est emerges as a useful enzyme that is more similar to key players in the area of PET hydrolysis, like PHL7 and IsPETase, than it is to its marine counterparts. Salt-tolerant polyesterases such as SM14est are potentially valuable in the biological degradation of plastic particles that readily contaminate marine ecosystems and industrial wastewaters.

2.
Nucleic Acids Res ; 50(9): 5208-5225, 2022 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-34951457

RESUMEN

Cas12a is an RNA-guided endonuclease that is emerging as a powerful genome-editing tool. Here, we selected a target site on bacteriophage λ-DNA and used optical tweezers combined with fluorescence to provide mechanistic insight into wild type Cas12a and three engineered variants, where the specific dsDNA and the unspecific ssDNA cleavage are dissociated (M1 and M2) and a third one which nicks the target DNA (M3). At low forces wtCas12a and the variants display two main off-target binding sites, while on stretched dsDNA at higher forces numerous binding events appear driven by the mechanical distortion of the DNA and partial matches to the crRNA. The multiple binding events onto dsDNA at high tension do not lead to cleavage, which is observed on the target site at low forces when the DNA is flexible. In addition, activity assays also show that the preferential off-target sites for this crRNA are not cleaved by wtCas12a, indicating that λ-DNA is only severed at the target site. Our single molecule data indicate that the Cas12a scaffold presents singular mechanical properties, which could be used to generate new endonucleases with biomedical and biotechnological applications.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Asociadas a CRISPR/genética , Sistemas CRISPR-Cas , Endodesoxirribonucleasas/genética , Edición Génica/métodos , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Bacteriófago lambda/genética , Proteínas Asociadas a CRISPR/química , Proteínas Asociadas a CRISPR/metabolismo , ADN/química , Endodesoxirribonucleasas/química , Endodesoxirribonucleasas/metabolismo , Endonucleasas/metabolismo , ARN Guía de Kinetoplastida/genética
3.
Biol Trace Elem Res ; 199(9): 3478-3488, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33094448

RESUMEN

In this study, accumulation of the top six most toxic trace metals (Arsenic (As), Cadmium (Cd), Chromium (Cr), Mercury (Hg), Nickel (Ni) and Lead (Pb)) were assessed in six indigenous fish species (Barilius barila, Salmostoma acinaces, Gudusia chapra, Labeo bata, Corica soborna, and Sperata aor) collected from the Old Brahmaputra River in Bangladesh. Human health risk associated with these fish consumption was also evaluated. Metals were analyzed in whole body of fish by an atomic absorption spectrometer (AAS). Mean concentrations of metals (µg/g, wet weight) were in the range of As (< 0.02-0.278), Cd (< 0.002-0.005), Cr (0.239-0.761), Hg (0.008-0.057), Ni (< 0.02-0.044), and Pb (< 0.01-0.038). The metal contents varied significantly among the fishes regarding their feeding habits and living habitats. Concentrations of As, Cr, Hg, and Pb were significantly higher in omnivorous species, whereas the benthopelagic species showed significantly higher accumulation of As (p < 0.05). The target hazard quotient (THQ) for noncarcinogenic risk and target cancer risk (TR) for carcinogenic risk were calculated to estimate the probabilities of experiencing these adverse health effects for the fish consumers. Metal-specific THQ values were all below 1 indicating no potential human health risk. Nonetheless, the hazard index (HI) values to estimate the effects from exposure to all metals collectively elucidated chronic noncarcinogenic health risk particularly from G. chapra consumption. The TR values revealed that there was carcinogenic risk from exposure to As through consumption of the fish. This study finally suggests a systematic and continuous monitoring of trace metal contamination in fishes from the river to ensure the fitness of this food item regarding the safety for human health.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Animales , Bangladesh , Monitoreo del Ambiente , Peces , Contaminación de Alimentos/análisis , Humanos , Metales Pesados/análisis , Medición de Riesgo , Ríos , Contaminantes Químicos del Agua/análisis
4.
Elife ; 92020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-33138911

RESUMEN

Single-molecule Förster Resonance energy transfer (smFRET) is an adaptable method for studying the structure and dynamics of biomolecules. The development of high throughput methodologies and the growth of commercial instrumentation have outpaced the development of rapid, standardized, and automated methodologies to objectively analyze the wealth of produced data. Here we present DeepFRET, an automated, open-source standalone solution based on deep learning, where the only crucial human intervention in transiting from raw microscope images to histograms of biomolecule behavior, is a user-adjustable quality threshold. Integrating standard features of smFRET analysis, DeepFRET consequently outputs the common kinetic information metrics. Its classification accuracy on ground truth data reached >95% outperforming human operators and commonly used threshold, only requiring ~1% of the time. Its precise and rapid operation on real data demonstrates DeepFRET's capacity to objectively quantify biomolecular dynamics and the potential to contribute to benchmarking smFRET for dynamic structural biology.


Proteins are folded into particular shapes in order to carry out their roles in the cell. However, their structures are not rigid: proteins bend and rotate in response to their environment. Identifying these movements is an important part of understanding how proteins work and interact with each other. Unfortunately, when researchers study the structures of proteins, they often look at the 'average' shape a protein takes, missing out on other conformations the protein might only be in temporarily. An important technique for studying protein flexibility is known as single molecule Förster resonance energy transfer (FRET). In this technique, two light-sensitive tags are attached to the same protein molecule and give off a signal when they come into close contact. This nano-scale sensor allows structural biologists to get information from individual protein movements that can be lost when looking at the average conformations of proteins. Advances in the instruments used to perform FRET have made observing the motion of individual proteins more widely accessible to non-specialists, but the analysis of the data that these instruments produce still requires a high level of expertise. To lower the barrier for non-specialists to use the technology, and to ensure that experiments can be reproduced on different instruments and by different researchers, Thomsen et al. have developed a new way to automate the data analysis. They used machine learning technology to recognize, filter and characterize data so as to produce reliable results, with the user only needing to perform a couple of steps. This new analysis approach could help expand the use of single-molecule FRET to different fields , allowing researchers to investigate the importance of protein flexibility for certain diseases, or to better understand the roles that proteins have in a cell.


Asunto(s)
Aprendizaje Profundo , Transferencia Resonante de Energía de Fluorescencia/métodos , Colorantes Fluorescentes/química , Imagen Individual de Molécula/métodos , Programas Informáticos , Algoritmos , Reacciones Falso Positivas , Cinética , Cadenas de Markov , Simulación de Dinámica Molecular , Nanotecnología , Distribución Normal , Reproducibilidad de los Resultados , Procesamiento de Señales Asistido por Computador , Interfaz Usuario-Computador
5.
Biomed J ; 43(1): 8-17, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32200959

RESUMEN

Prokaryotes have developed an adaptive immune system called Clustered regularly interspaced short palindromic repeats (CRISPR) to combat attacks by foreign mobile genetic elements (MGEs) such as plasmids and phages. In the past decade, the widely characterized CRISPR-Cas9 enzyme has been redesigned to trigger a genome editing revolution. Class II type V CRISPR-Cas12a is a new RNA guided endonuclease that has been recently harnessed as an alternative genome editing tool, which is emerging as a powerful molecular scissor to consider in the genome editing application landscape. In this review, we aim to provide a mechanistic insight into the working mechanism of Cas12a, comparing it with Cas9, and eventually provide an overview of its current applications in genome editing and biotechnology applications.


Asunto(s)
Sistemas CRISPR-Cas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Endonucleasas/genética , Edición Génica , Animales , Endonucleasas/metabolismo , Edición Génica/métodos , Humanos , ARN/genética
6.
Cell ; 175(7): 1856-1871.e21, 2018 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-30503205

RESUMEN

Cas12a, also known as Cpf1, is a type V-A CRISPR-Cas RNA-guided endonuclease that is used for genome editing based on its ability to generate specific dsDNA breaks. Here, we show cryo-EM structures of intermediates of the cleavage reaction, thus visualizing three protein regions that sense the crRNA-DNA hybrid assembly triggering the catalytic activation of Cas12a. Single-molecule FRET provides the thermodynamics and kinetics of the conformational activation leading to phosphodiester bond hydrolysis. These findings illustrate why Cas12a cuts its target DNA and unleashes unspecific cleavage activity, degrading ssDNA molecules after activation. In addition, we show that other crRNAs are able to displace the R-loop inside the protein after target DNA cleavage, terminating indiscriminate ssDNA degradation. We propose a model whereby the conformational activation of the enzyme results in indiscriminate ssDNA cleavage. The displacement of the R-loop by a new crRNA molecule will reset Cas12a specificity, targeting new DNAs.


Asunto(s)
Proteínas Bacterianas/química , Sistemas CRISPR-Cas , División del ADN , ADN de Cadena Simple/química , Francisella/química , ARN Guía de Kinetoplastida/química , Proteínas Bacterianas/genética , Catálisis , ADN de Cadena Simple/genética , Francisella/genética , Edición Génica , ARN Guía de Kinetoplastida/genética
7.
Nat Plants ; 4(8): 615, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30038411

RESUMEN

In the version of this Article originally published, the name of co-author Annemarie Perez Boerema was coded wrongly, resulting in it being incorrect when exported to citation databases. This has been corrected, though no visible changes will be apparent.

8.
Nat Plants ; 4(4): 212-217, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29610536

RESUMEN

Oxygenic photosynthesis produces oxygen and builds a variety of organic compounds, changing the chemistry of the air, the sea and fuelling the food chain on our planet. The photochemical reactions underpinning this process in plants take place in the chloroplast. Chloroplasts evolved ~1.2 billion years ago from an engulfed primordial diazotrophic cyanobacterium, and chlororibosomes are responsible for synthesis of the core proteins driving photochemical reactions. Chlororibosomal activity is spatiotemporally coupled to the synthesis and incorporation of functionally essential co-factors, implying the presence of chloroplast-specific regulatory mechanisms and structural adaptation of the chlororibosome1,2. Despite recent structural information3-6, some of these aspects remained elusive. To provide new insights into the structural specialities and evolution, we report a comprehensive analysis of the 2.9-3.1 Å resolution electron cryo-microscopy structure of the spinach chlororibosome in complex with its recycling factor and hibernation-promoting factor. The model reveals a prominent channel extending from the exit tunnel to the chlororibosome exterior, structural re-arrangements that lead to increased surface area for translocon binding, and experimental evidence for parallel and convergent evolution of chloro- and mitoribosomes.


Asunto(s)
Cloroplastos/química , Proteínas de Plantas/química , Ribosomas/química , Spinacia oleracea/citología , Cloroplastos/metabolismo , Microscopía por Crioelectrón , Procesamiento de Imagen Asistido por Computador , Modelos Moleculares , Proteínas de Plantas/metabolismo , Conformación Proteica , Ribosomas/metabolismo
9.
IUCrJ ; 4(Pt 6): 723-727, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-29123673

RESUMEN

The introduction of direct detectors and the automation of data collection in cryo-EM have led to a surge in data, creating new opportunities for advancing computational processing. In particular, on-the-fly workflows that connect data collection with three-dimensional reconstruction would be valuable for more efficient use of cryo-EM and its application as a sample-screening tool. Here, accelerated on-the-fly analysis is reported with optimized organization of the data-processing tools, image acquisition and particle alignment that make it possible to reconstruct the three-dimensional density of the 70S chlororibosome to 3.2 Šresolution within 24 h of tissue harvesting. It is also shown that it is possible to achieve even faster processing at comparable quality by imposing some limits to data use, as illustrated by a 3.7 Šresolution map that was obtained in only 80 min on a desktop computer. These on-the-fly methods can be employed as an assessment of data quality from small samples and extended to high-throughput approaches.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...