Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mo Med ; 115(1): 75-81, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30228688

RESUMEN

This is a review of some of the recent developments in the application of 3D printing to medicine. The topic is introduced with a brief explanation as to how and why 3D is changing practice, teaching, and research in medicine. Then, taking recent examples of progress in the field, we illustrate the current state of the art. This article concludes by evaluating the current limitations of 3D printing for medical applications and suggesting where further progress is likely to be made.


Asunto(s)
Tecnología Biomédica/tendencias , Impresión Tridimensional/tendencias , Humanos
2.
ASAIO J ; 63(1): 53-59, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28033202

RESUMEN

The application of centrifugal pumps as heart assist devices imposes design limitations on the impeller geometry. Geometry and operating parameters will affect the performance and the hemocompatibility of the device. Among all the parameters affecting the hemocompatibility, pressure, rotational speed, blade numbers, angle, and width have significant impact on the blood trauma. These parameters directly (pressure, speed) and indirectly (geometry) affect the efficiency of the pump as well. This study describes the experimental investigation on geometric parameters and their effect on the performance of small centrifugal pumps suitable for Mechanical Circulatory Support (MCS) devices. Experimental and numerical techniques were implemented to analyze the performance of 15 centrifugal impellers with different characteristics. The effect of each parameter on the pump performance and hemolysis was studied by calculating the normalized index of hemolysis (NIH) and the shear stress induced in each pump. The results show five and six blades, 15-35° outlet angle, and the lowest outlet width that meets the required pressure rise are optimum values for an efficient hemocompatible pump.


Asunto(s)
Corazón Auxiliar , Hemólisis , Centrifugación , Diseño de Equipo , Humanos , Estrés Mecánico
3.
ASAIO J ; 62(5): 545-51, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27258221

RESUMEN

The application of artificial mechanical pumps as heart assist devices impose power and size limitations on the pumping mechanism, and therefore requires careful optimization of pump characteristics. Typically new pumps are designed by relying on the performance of other previously designed pumps of known performance using concepts of fluid dynamic similarity. Such data are readily available for industrial pumps, which operate in Reynolds numbers region of 10. Heart assist pumps operate in Reynolds numbers of 10. There are few data available for the design of centrifugal pumps in this characteristic range. This article develops specific speed versus specific diameter graphs suitable for the design and optimization of these smaller centrifugal pumps concentrating in dimensions suitable for ventricular assist devices (VADs) and mechanical circulatory support (MCS) devices. A combination of experimental and numerical techniques was used to measure and analyze the performance of 100 optimized pumps designed for this application. The data are presented in the traditional Cordier diagram of nondimensional specific speed versus specific diameter. Using these data, nine efficient designs were selected to be manufactured and tested in different operating conditions of flow, pressure, and rotational speed. The nondimensional results presented in this article enable preliminary design of centrifugal pumps for VADs and MCS devices.


Asunto(s)
Diseño de Equipo , Corazón Auxiliar , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...