Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Molecules ; 29(4)2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38398637

RESUMEN

Several types of pollutants have acute adverse effects on living bodies, and the effective removal of these pollutants remains a challenge. Safranin O (a biological dye) and merbromin (a topical mercury-containing antiseptic) are considered organic pollutants, and there are only a few reports on their removal. Synthesized and well-characterized (through PXRD, FTIR, FESEM, and EDS analysis) MOF-5 was used for the first time in the removal of safranin O and merbromin from simulated wastewater and real wastewater. In both cases, MOF-5 effectively removed contaminants. We found that in simulated wastewater, the highest efficiency of removal of safranin O was 53.27% (for 15 mg/L) at pH 10, and for merbromin, it was 41.49% (for 25 mg/L) at pH 6. In the case of real wastewater containing natural ions (Na+, K+, F-, Cl-, SO42-, PO43-, Mg2+, and Ca2+) and other molecules, the removal efficiencies of these two dyes decreased (34.00% and 26.28% for safranin O and merbromin, respectively) because of the presence of other ions and molecules. A plausible mechanism for the removal of these pollutants using MOF-5 was proposed.

2.
Eur J Med Chem ; 265: 116050, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38128233

RESUMEN

Poor intracellular uptake of therapeutics in the tumor parenchyma is a key issue in cancer therapy. We describe a novel approach to enhance tumor targeting and achieve targeted delivery of camptothecin (CPT) based on a tumor-homing internalizing RGD peptide (iRGD). We synthesized an iRGD-camptothecin conjugate (iRGD-CPT) covalently coupled by a heterobifunctional linker and evaluated its in vitro and in vivo activity in human colon cancer cells. In vitro studies revealed that iRGD-CPT penetrated cells efficiently and reduced colon cancer cell viability to a significantly greater extent at micromolar concentrations than did the parent drug. Furthermore, iRGD-CPT showed high distribution toward tumor tissue, effectively suppressed tumor progression, and showed enhanced antitumor effects relative to the parent drug in a mouse model, demonstrating that iRGD-CPT is effective in vivo cancer treatment. These results suggest that intracellular delivery of CPT via the iRGD peptide is a promising drug delivery strategy that will facilitate the development of CPT derivatives and prodrugs with improved efficacy.


Asunto(s)
Antineoplásicos , Neoplasias del Colon , Animales , Ratones , Humanos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Neoplasias del Colon/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Camptotecina/farmacología , Camptotecina/uso terapéutico
3.
Bioinorg Chem Appl ; 2022: 8453159, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35464734

RESUMEN

Phenalenyl (PLY)-based metal complexes are a new addition to the metal complex family. Various applications of metal-based phenalenyl complexes (metal-PLY) have been reported, such as catalyst, quantum spin simulators, spin electronic devices, and molecular conductors, but the biological significance of metal-PLY (metal = Co(II), Mn(III), Ni(II), Fe(III), and Al(III)) systems has yet to be explored. In this study, the anticancer properties of such complexes were investigated in ovarian cancer cells (SKOV3 and HEY A8), and the cytotoxicity was comparable to that of other platinum-based drugs. Antibacterial activity of the metal-PLY complexes against both gram-negative (E. coli) and gram-positive (S. aureus) bacteria was studied using a disk diffusion test and minimum inhibitory concentration (MIC) methods. All five metal-PLY complexes showed significant antibacterial activity against both bacterial strains. The antioxidant properties of metal-PLY complexes were evaluated following the 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging method and were acceptable. The DNA-binding properties of these metal-PLY complexes were investigated using absorption spectroscopy, fluorescence spectroscopy, viscosity measurements, and thermal denaturation methods. Experimental evidence revealed that the complexes bind to DNA through intercalation, and the molecular docking study supported this conclusion.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA