Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Adv Vet Anim Res ; 9(1): 19-32, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35445120

RESUMEN

Objectives: The research aims to analyze the catabolic strength of different hydrolytic enzymes in assessing the biological conversion potential of lignocellulose parts of agricultural biomass wastes into functional edible sugars and biofuels. Materials and Methods: The enzymes' hydrolytic properties-versatile peroxidase, manganese peroxidase, and lignin peroxidase were used to identify their complexing strength with the lignin substrate, whereas endoglucanase cel12A, acidocaldarius cellulase, and Melanocarpus albomyces endoglucanase were tested on the cellulose gel substrate. Because the biodegradation properties are heavily influenced by the "enzyme-substrate complexing energy level," proper molecular optimization and energy minimization of the enzymes and substrates were carried out, as well as the identification of the enzyme's active sites prior to complexing.comprehensive molecular dynamic simulation was run to study their-alpha carbon, root-mean-square deviation (Å), molecular surface area (Å2), root-mean-square fluctuation (Å), radius of gyration (nm), hydrogen bonds with hydrophobic interactions, and solvent accessible surface area (Å2) values for 50 ns. The simulated data mining was conducted using advanced programming algorithms to establish the final enzyme-substrate complexing strength in binding and catalysis. Results: Among the lignin-degrading enzymes, versatile peroxidase shows promising catalytic activity with the best docking pose and significant values in all the dynamic simulation parameters. Similarly, Melanocarpus albomyces endoglucanase shows the best activity in all aspects of molecular docking and dynamics among the cellulose-degrading enzymes. Conclusion: The lignin content of biomass wastes can be degraded into cellulose and hemicellulose using lignin-degrading enzymes. The cellulose can be further degraded into glucose and xylose sugars following the cellulose-degrading enzyme activity. These sugars can be further degraded into biofuel through anaerobic fermentation. Systematic bioconversion of the lignocellulosic components can ensure sustainable biomass management, creating an alternative food and energy source for human beings to face the challenges of global hunger where the enzymes can pave the way.

2.
J Adv Vet Anim Res ; 8(1): 24-35, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33860009

RESUMEN

OBJECTIVES: The comprehensive in silico study aims to figure out the most effective aromatic phytochemical ligands among a number from a library, considering their pharmacokinetic efficacies in blocking "angiotensin-converting enzyme 2 (ACE2) receptor-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) S protein" complex formation as part of a target-specific drug designing. MATERIALS AND METHODS: A library of 57 aromatic pharmacophore phytochemical ligands was prepared from where the top five ligands depending on Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) and quantitative structure-activity relationship (QSAR)-based pharmacokinetic properties were considered. The selected ligands were optimized for commencing molecular docking and dynamic simulation as a complex with the ACE2 receptor to compare their blocking efficacy with the control drug. The ligand-receptor complexes' accuracy in preventing the Spike (S) protein of SARS-CoV-2 penetration inside the host cells has been analyzed through hydrogen-hydrophobic bond interactions, principal component analysis (PCA), root mean square deviation (RMSD), root mean square fluctuation (RMSF), and B-Factor. Advanced in silico programming language and bioanalytical software were used for high throughput and authentic results. RESULTS: ADMET and QSAR revealed Rhamnetin, Lactupicrin, Rhinacanthin D, Flemiflavanone D, and Exiguaflavanone A as the ligands of our interest to be compared with the control Cassiarin D. According to the molecular docking binding affinity to block ACE2 receptor, the efficiency mountings were Rhinacanthin D > Flemiflavanone D > Lactupicrin > Exiguaflavanone A > Rhamnetin. The binding affinity of the Cassiarin D-ACE2 complex was (-10.2 KJ/mol) found inferior to the Rhinacanthin D-ACE2 complex (-10.8 KJ/mol), referring to Rhinacanthin D as a more stable candidate to use as drugs. The RMSD values of protein-ligand complexes evaluated according to their structural conformation and stable binding pose ranged between 0.1~2.1 Å. The B-factor showed that very few loops were present in the protein structure. The RMSF peak fluctuation regions ranged 5-250, predicting efficient ligand-receptor interactions. CONCLUSION: The experiment sequentially measures all the parameters required in referring to any pharmacophore as a drug, considering which all aromatic components analyzed in the study can strongly be predicted as target-specific medication against the novel coronavirus 2019 infection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...