Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Phytopathology ; 114(2): 484-495, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38408034

RESUMEN

Maize lethal necrosis (MLN) is a viral disease caused by host co-infection by maize chlorotic mottle virus (MCMV) and a potyvirus, such as sugarcane mosaic virus (SCMV). The disease is most effectively managed by growing MLN-resistant varieties. However, the relative importance of MCMV and potyvirus resistance in managing this synergistic disease is poorly characterized. In this study, we evaluated the effects of SCMV and/or MCMV resistance on disease, virus titers, and synergism and explored expression patterns of known potyvirus resistance genes TrxH and ABP1. MLN disease was significantly lower in both the MCMV-resistant and SCMV-resistant inbred lines compared with the susceptible control Oh28. Prior to 14 days postinoculation (dpi), MCMV titers in resistant lines N211 and KS23-6 were more than 100,000-fold lower than found in the susceptible Oh28. However, despite no visible symptoms, titer differences between MCMV-resistant and -susceptible lines were negligible by 14 dpi. In contrast, systemic SCMV titers in the potyvirus-resistant line, Pa405, ranged from 130,000-fold to 2 million-fold lower than susceptible Oh28 as disease progressed. Initial TrxH expression was up to 49,000-fold lower in Oh28 compared with other genotypes, whereas expression of ABP1 was up to 4.5-fold lower. Measures of virus synergy indicate that whereas MCMV resistance is effective in early infection, strong potyvirus resistance is critical for reducing synergist effects of co-infection on MCMV titer. These results emphasize the importance of both potyvirus resistance and MCMV resistance in an effective breeding program for MLN management.


Asunto(s)
Coinfección , Potyvirus , Tombusviridae , Enfermedades de las Plantas , Necrosis
2.
Sci Rep ; 13(1): 17064, 2023 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-37816924

RESUMEN

Phyllachora maydis is a fungal pathogen causing tar spot of corn (Zea mays L.), a new and emerging, yield-limiting disease in the United States. Since being first reported in Illinois and Indiana in 2015, P. maydis can now be found across much of the corn growing regions of the United States. Knowledge of the epidemiology of P. maydis is limited but could be useful in developing tar spot prediction tools. The research presented here aims to elucidate the environmental conditions necessary for the development of tar spot in the field and the creation of predictive models to anticipate future tar spot epidemics. Extended periods (30-day windowpanes) of moderate mean ambient temperature (18-23 °C) were most significant for explaining the development of tar spot. Shorter periods (14- to 21-day windowpanes) of moisture (relative humidity, dew point, number of hours with predicted leaf wetness) were negatively correlated with tar spot development. These weather variables were used to develop multiple logistic regression models, an ensembled model, and two machine learning models for the prediction of tar spot development. This work has improved the understanding of P. maydis epidemiology and provided the foundation for the development of a predictive tool for anticipating future tar spot epidemics.


Asunto(s)
Enfermedades de las Plantas , Zea mays , Estados Unidos/epidemiología , Zea mays/microbiología , Enfermedades de las Plantas/microbiología , Phyllachorales , Illinois/epidemiología
3.
Phytopathology ; 113(8): 1483-1493, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36880796

RESUMEN

Constructing models that accurately predict Fusarium head blight (FHB) epidemics and are also amenable to large-scale deployment is a challenging task. In the United States, the emphasis has been on simple logistic regression (LR) models, which are easy to implement but may suffer from lower accuracies when compared with more complicated, harder-to-deploy (over large geographies) model frameworks such as functional or boosted regressions. This article examined the plausibility of random forests (RFs) for the binary prediction of FHB epidemics as a possible mediation between model simplicity and complexity without sacrificing accuracy. A minimalist set of predictors was also desirable rather than having the RF model use all 90 candidate variables as predictors. The input predictor set was filtered with the aid of three RF variable selection algorithms (Boruta, varSelRF, and VSURF), using resampling techniques to quantify the variability and stability of selected variable sets. Post-selection filtering produced 58 competitive RF models with no more than 14 predictors each. One variable representing temperature stability in the 20 days before anthesis was the most frequently selected predictor. This was a departure from the prominence of relative humidity-based variables previously reported in LR models for FHB. The RF models had overall superior predictive performance over the LR models and may be suitable candidates for use by the Fusarium Head Blight Prediction Center.

4.
PLoS One ; 18(2): e0281484, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36745639

RESUMEN

Maize lethal necrosis is a destructive virus disease of maize caused by maize chlorotic mottle virus (MCMV) in combination with a virus in the family Potyviridae. Emergence of MLN is typically associated with the introduction of MCMV or its vectors and understanding its spread through seed is critical for disease management. Previous studies suggest that although MCMV is detected on seed, the seed transmission rate of this virus is low. However, mechanisms influencing its transmission are poorly understood. Elucidating these mechanisms is crucial for informing strategies to prevent spread on contaminated seed. In this study, we evaluated the rate of MCMV seed transmission using seed collected from plants that were artificially inoculated with MCMV isolates from Hawaii and Kenya. Grow-out tests indicated that MCMV transmission through seed was rare, with a rate of 0.004% among the more than 85,000 seed evaluated, despite detection of MCMV at high levels in the seed lots. To understand factors that limit transmission from seed, MCMV distribution in seed tissues was examined using serology and immunolocalization. The virus was present at high levels in maternal tissues, the pericarp and pedicel, but absent from filial endosperm and embryo seed tissues. The ability to transmit MCMV from seed to uninfected plants was tested to evaluate virus viability. Transmission was negatively associated with both seed maturity and moisture content. Transmission of MCMV from infested seed dried to less than 15% moisture was not detected, suggesting proper handling could be important for minimizing spread of MCMV through seed.


Asunto(s)
Enfermedades de las Plantas , Potyviridae , Tombusviridae , Zea mays , Kenia , Enfermedades de las Plantas/virología , Zea mays/virología , Hawaii , Semillas/virología
5.
Plant Dis ; 107(1): 46-59, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35640946

RESUMEN

The effects of sampling depth and crop growth stage on the population density of lesion nematodes were investigated in three commercial fields in Wayne and Fulton Counties, Ohio, during the 2016 and 2017 growing seasons. Soil samples were collected at five growth stages by removing 15 soil cores to a depth of 70 cm from each of 25 plots per field-year. Cores were divided into seven 10-cm sections, and nematodes were extracted from the soil and root fractions of each of them. Pratylenchus crenatus and P. thornei were detected in approximately 84 and 78% of the samples collected in Wayne and Fulton Counties, respectively. Depth significantly affected total population density of both species as well as densities in the soil and root factions in all field-years, but the effects of growth stage and its interaction with depth varied with field-year. In most cases, mean population densities were higher from 10 to 40 cm soil depth than at the reference 40 to 50 cm depth and lower from 50 to 70 cm. There were quadratic relationships between population density (on the log link scale) and depth, with the highest peaks in estimated predicted densities generally occurring between 20 and 40 cm, depending on crop growth stage and growing conditions. These findings suggest that the standard practice of sampling between growth stages V3 and V6 to a depth of 45 to 50 cm and using the entire core for extraction and enumeration could lead to underestimation of population densities of P. crenatus and P. thornei.


Asunto(s)
Tylenchoidea , Zea mays , Animales , Densidad de Población , Ohio , Enfermedades de las Plantas , Suelo
6.
Glob Chang Biol ; 29(4): 926-934, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36416581

RESUMEN

Wheat is a globally important crop and one of the "big three" US field crops. But unlike the other two (maize and soybean), in the United States its development is commercially unattractive, and so its breeding takes place primarily in public universities. Troublingly, the incentive structures within these universities may be hindering genetic improvement just as climate change is complicating breeding efforts. "Business as usual" in the US public wheat-breeding infrastructure may not sustain productivity increases. To address this concern, we held a multidisciplinary conference in which researchers from 12 US (public) universities and one European university shared the current state of knowledge in their disciplines, aired concerns, and proposed initiatives that could facilitate maintaining genetic improvement of wheat in the face of climate change. We discovered that climate-change-oriented breeding efforts are currently considered too risky and/or costly for most university wheat breeders to undertake, leading to a relative lack of breeding efforts that focus on abiotic stressors such as drought and heat. We hypothesize that this risk/cost burden can be reduced through the development of appropriate germplasm, relevant screening mechanisms, consistent germplasm characterization, and innovative models predicting the performance of germplasm under projected future climate conditions. However, doing so will require coordinated, longer-term, inter-regional efforts to generate phenotype data, and the modification of incentive structures to consistently reward such efforts.


Asunto(s)
Cambio Climático , Triticum , Triticum/genética , Fitomejoramiento , Calor , Sequías
7.
Phytopathology ; 113(2): 206-224, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36131392

RESUMEN

Fusarium head blight (FHB) of wheat, caused by the fungus Fusarium graminearum, is associated with grain contamination with mycotoxins such as deoxynivalenol (DON). Although FHB is often positively correlated with DON, this relationship can break down under certain conditions. One possible explanation for this could be the conversion of DON to DON-3-glucoside (D3G), which is typically missed by common DON testing methods. The objective of this study was to quantify the effects of temperature, relative humidity (RH), and preharvest rainfall on DON, D3G, and the D3D/DON relationship. D3G levels were higher in grain from spikes exposed to 100% RH than to 70, 80, or 90% RH at 20 and 25°C across all tested levels of mean FHB index (percentage of diseased spikelets per spike). Mean D3G contamination was higher at 20°C than at 25 or 30°C. There were significantly positive linear relationships between DON and D3G. Rainfall treatments resulted in significantly higher mean D3G than the rain-free check and induced preharvest sprouting, as indicated by low falling numbers (FNs). There were significant positive relationships between the rate of increase in D3G per unit increase in DON (a measure of conversion) and sprouting. As FN decreased, the rate of D3G conversion increased, and this rate of conversion per unit decrease in FN was greater at relatively low than at high mean DON levels. These results provide strong evidence that moisture after FHB visual symptom development was associated with DON-to-D3G conversion and constitute valuable new information for understanding this complex disease-mycotoxin system.


Asunto(s)
Fusarium , Micotoxinas , Triticum/microbiología , Enfermedades de las Plantas/microbiología , Grano Comestible
8.
Phytopathology ; 113(2): 225-238, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35994731

RESUMEN

Fusarium head blight (FHB), caused by the fungus Fusarium graminearum, is associated with grain contamination with mycotoxins such as deoxynivalenol (DON) and zearalenone (ZEA). Unlike DON, less is known about factors affecting ZEA production during FHB epidemics. The objective of this study was to quantify ZEA contamination of wheat grain as influenced by temperature, relative humidity, FHB index (IND), grain maturation, simulated late-season rainfall, and harvest timing. Mean ZEA concentrations were low (<1.1 ppm) during the early stages of grain development (25 to 31 days after anthesis [DAA]) but rapidly increased 35 to 51 DAA in field experiments, particularly under rainy conditions. Five or ten consecutive days with simulated rainfall shortly before harvest greatly increased ZEA contamination. Similarly, extremely high levels of ZEA (51.8 to 468.6 ppm) were observed in grain from spikes exposed to 100% relative humidity (RH) at all tested temperatures and mean IND levels under controlled conditions. Interestingly, at RH ≤ 90%, ZEA concentrations were very low (0.1 to 3.6 ppm) at all tested temperatures, even at IND above 90%. At 100% RH, mean ZEA contamination was significantly higher at 20 and 25°C (235.1 and 278.2 ppm) than at 30°C (104.7 ppm). Grain harvested early and not exposed to rainfall had lower mean ZEA than grain harvested late and/or subjected to preharvest rainfall. This study was the first to associate ZEA contamination of grain from FHB-affected wheat spikes with temperature and moisture and show through designed experiments that early harvest could be a useful strategy for reducing ZEA contamination.


Asunto(s)
Fusarium , Micotoxinas , Tricotecenos , Zearalenona , Zearalenona/farmacología , Triticum/microbiología , Enfermedades de las Plantas/microbiología , Grano Comestible/microbiología
9.
Plant Dis ; 106(12): 3061-3075, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35536201

RESUMEN

The impact of Gibberella ear rot (GER; caused by Fusarium graminearum) on deoxynivalenol (DON) contamination of grain and yield components in maize were investigated using data from 30 environments in Ohio (3 years by 10 locations). Fifteen hybrids, later classified as susceptible (SU), moderately susceptible (MS), or moderately resistant (MR), based on the magnitude of differences in mean arcsine square-root-transformed GER severity (arcSEV) and log-transformed DON (logDON) relative to a reference SU check, were planted in each environment, and 10 ears per hybrid were inoculated with a spore suspension of F. graminearum. Relationships between GER severity and DON were well described by a Kono-Sugino-type nonlinear equation. Estimated parameters representing height (A) and steepness (ß) of the curves were significantly higher for SU than MS and MR hybrids but A was not significantly different between MS and MR. Results from a surrogacy analysis showed that GER was a moderate trial- and individual-level surrogate for DON. Both grain weight per ear and ear diameter decreased with increasing arcSEV but the regression slopes varied among resistance classes. The rates of reduction in both yield components per unit increase in arcSEV were significantly greater for SU than for MS and MR. An estimated 50% reduction in grain weight occurred at 62% GER severity for SU, compared with 77% severity for MS and 83% for MR. These results show that GER severity can be used as a surrogate for early estimation of DON contamination and yield loss to help guide grain handling and marketing decisions.


Asunto(s)
Gibberella , Gibberella/genética , Zea mays , Enfermedades de las Plantas , Grano Comestible , Semillas
10.
Ecol Evol ; 12(4): e8832, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35494500

RESUMEN

The genus Phyllachora contains numerous obligate fungal parasites that produce raised, melanized structures called stromata on their plant hosts referred to as tar spot. Members of this genus are known to infect many grass species but generally do not cause significant damage or defoliation, with the exception of P. maydis which has emerged as an important pathogen of maize throughout the Americas, but the origin of this pathogen remains unknown. To date, species designations for Phyllachora have been based on host associations and morphology, and most species are assumed to be host specific. We assessed the sequence diversity of 186 single stroma isolates collected from 16 hosts representing 15 countries. Samples included both herbarium and contemporary strains that covered a temporal range from 1905 to 2019. These 186 isolates were grouped into five distinct species with strong bootstrap support. We found three closely related, but genetically distinct groups of Phyllachora are capable of infecting maize in the United States, we refer to these as the P. maydis species complex. Based on herbarium specimens, we hypothesize that these three groups in the P. maydis species complex originated from Central America, Mexico, and the Caribbean. Although two of these groups were only found on maize, the third and largest group contained contemporary strains found on maize and other grass hosts, as well as herbarium specimens from maize and other grasses that include 10 species of Phyllachora. The herbarium specimens were previously identified based on morphology and host association. This work represents the first attempt at molecular characterization of Phyllachora species infecting grass hosts and indicates some Phyllachora species can infect a broad range of host species and there may be significant synonymy in the Phyllachora genus.

11.
Plant Dis ; 106(11): 2839-2855, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35471074

RESUMEN

Field experiments were conducted to investigate the efficacy of fungicide treatments in combination with genetic resistance against Fusarium head blight (FHB) and its associated mycotoxins under persistently wet pre- and postanthesis conditions in plots inoculated with Fusarium graminearum-colonized corn spawn. Treatments consisted of a single application of prothioconazole + tebuconazole at early anthesis (PA), or at 3 (P3), 6 (P6), or 9 (P9) days after early anthesis, or PA followed by a single application of metconazole at 3 (PA+C3), 6 (PA+C6), or 9 (PA+C9) days after early anthesis. PA and P3 were the most efficacious of the single-application treatments in terms of mean percentage control of FHB index (IND), deoxynivalenol (DON), zearalenone (ZEA), and mean increase in grain yield and test weight (TW) relative to the nontreated susceptible check (S_CK). The double-application treatments (PA+C3, PA+C6, and PA+C9) were the most effective of all tested fungicide programs. However, relative to S_CK, the highest overall mean percentage reduction in IND, DON, and ZEA and increase in grain yield and TW were observed when the double-application fungicide programs were integrated with genetic resistance. The estimated net cash income (NCI) of the integrated management (IM) programs was consistently higher than the NCI of other tested programs across different grain prices and fungicide application costs. Thus, the benefits of the two-treatment IM programs under highly favorable conditions for FHB development were enough to offset the cost of two applications, making these programs profitable.


Asunto(s)
Fungicidas Industriales , Fusarium , Micotoxinas , Zearalenona , Triticum/genética , Fungicidas Industriales/farmacología , Micotoxinas/farmacología , Enfermedades de las Plantas/prevención & control , Grano Comestible
12.
Plant Dis ; 106(8): 2127-2137, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35133185

RESUMEN

Species of Phytophthora, Phytopythium, and Pythium affect soybean seed and seedlings each year, primarily through reduced plant populations and yield. Oxathiapiprolin is effective at managing several foliar diseases caused by some oomycetes. The objectives of these studies were to evaluate oxathiapiprolin in a discriminatory dose assay in vitro; evaluate oxathiapiprolin as a soybean seed treatment on a moderately susceptible cultivar in 10 environments; compare the impact of seed treatment on plant populations and yields in environments with low and high precipitation; and compare a seed treatment mixture on cultivars with different levels of resistance in four environments. There was no reduction in growth in vitro among 13 species of Pythium at 0.1 µg ml-1. Soybean seed treated with the base fungicide plus oxathiapiprolin (12 and 24 µg a.i. seed-1) alone, oxathiapiprolin (12 µg a.i. seed-1) plus mefenoxam (6 µg a.i. seed-1), or oxathiapiprolin (24 µg a.i. seed-1) plus ethaboxam (12.1 µg a.i. seed-1) had greater yields in environments that received ≥50 mm of precipitation within 14 days after planting compared with those that received less. Early plant population and yield were significantly higher for seed treated with oxathiapiprolin (24 µg a.i. seed-1) + metalaxyl (13.2 µg a.i. seed-1) compared with nontreated for six of seven cultivars in at least one of four environments. Oxathiapiprolin combined with another Oomycota fungicide applied to seed has the potential to be used to protect soybean plant establishment and yield in regions prone to poor drainage after high levels of precipitation.


Asunto(s)
Fungicidas Industriales , Phytophthora , Pythium , Alanina/análogos & derivados , Fungicidas Industriales/farmacología , Hidrocarburos Fluorados , Enfermedades de las Plantas/prevención & control , Pirazoles , Plantones , Semillas , Glycine max
13.
Phytopathology ; 112(2): 315-334, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34058859

RESUMEN

Because Fusarium head blight (FHB) intensity is usually highly variable within a plot, the number of spikes rated for FHB index (IND) quantification must be considered when designing experiments. In addition, quantification of sources of IND heterogeneity is crucial for defining sampling protocols. Field experiments were conducted to quantify the variability of IND ("field severity") at different spatial scales and to investigate the effects of sample size on estimated plot-level mean IND and its accuracy. A total of 216 7-row × 6-m-long plots of a moderately resistant and a susceptible cultivar were spray-inoculated with different Fusarium graminearum spore concentrations at anthesis to generate a range of IND levels. A one-stage cluster sampling approach was used to estimate IND, with an average of 32 spikes rated at each of 10 equally spaced points per plot. Plot-level mean IND ranged from 0.9 to 37.9%. Heterogeneity of IND, quantified by fitting unconditional hierarchical linear models, was higher among spikes within clusters than among clusters within plots or among plots. The projected relative error of mean IND increased as mean IND decreased, and as sample size decreased to <100 spikes per plot. Simple random samples were drawn with replacement 50,000 times from the original dataset for each plot and used to estimate the effects of sample sizes on mean IND. Samples of 100 or more spikes resulted in more precise estimates of mean IND than smaller samples. Poor sampling may result in inaccurate estimates of IND and poor interpretation of results.


Asunto(s)
Fusarium , Tricotecenos , Enfermedades de las Plantas , Tamaño de la Muestra , Triticum
14.
Phytopathology ; 111(12): 2250-2267, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34009008

RESUMEN

Models were developed to quantify the risk of deoxynivalenol (DON) contamination of maize grain based on weather, cultural practices, hybrid resistance, and Gibberella ear rot (GER) intensity. Data on natural DON contamination of 15 to 16 hybrids and weather were collected from 10 Ohio locations over 4 years. Logistic regression with 10-fold cross-validation was used to develop models to predict the risk of DON ≥1 ppm. The presence and severity of GER predicted DON risk with an accuracy of 0.81 and 0.87, respectively. Temperature, relative humidity, surface wetness, and rainfall were used to generate 37 weather-based predictor variables summarized over each of six 15-day windows relative to maize silking (R1). With these variables, least absolute shrinkage and selection operator (LASSO) followed by all-subsets variable selection and logistic regression with 10-fold cross-validation were used to build single-window weather-based models, from which 11 with one or two predictors were selected based on performance metrics and simplicity. LASSO logistic regression was also used to build more complex multiwindow models with up to 22 predictors. The performance of the best single-window models was comparable to that of the best multiwindow models, with accuracy ranging from 0.81 to 0.83 for the former and 0.83 to 0.87 for the latter group of models. These results indicated that the risk of DON ≥1 ppm can be accurately predicted with simple models built using temperature- and moisture-based predictors from a single window. These models will be the foundation for developing tools to predict the risk of DON contamination of maize grain.


Asunto(s)
Fusarium , Tricotecenos , Contaminación de Alimentos , Modelos Logísticos , Enfermedades de las Plantas , Zea mays
15.
PLoS Comput Biol ; 17(3): e1008831, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33720929

RESUMEN

Ensembling combines the predictions made by individual component base models with the goal of achieving a predictive accuracy that is better than that of any one of the constituent member models. Diversity among the base models in terms of predictions is a crucial criterion in ensembling. However, there are practical instances when the available base models produce highly correlated predictions, because they may have been developed within the same research group or may have been built from the same underlying algorithm. We investigated, via a case study on Fusarium head blight (FHB) on wheat in the U.S., whether ensembles of simple yet highly correlated models for predicting the risk of FHB epidemics, all generated from logistic regression, provided any benefit to predictive performance, despite relatively low levels of base model diversity. Three ensembling methods were explored: soft voting, weighted averaging of smaller subsets of the base models, and penalized regression as a stacking algorithm. Soft voting and weighted model averages were generally better at classification than the base models, though not universally so. The performances of stacked regressions were superior to those of the other two ensembling methods we analyzed in this study. Ensembling simple yet correlated models is computationally feasible and is therefore worth pursuing for models of epidemic risk.


Asunto(s)
Biología Computacional/métodos , Epidemias/estadística & datos numéricos , Modelos Estadísticos , Algoritmos , Fusarium , Enfermedades de las Plantas/estadística & datos numéricos , Triticum/microbiología
16.
Plant Dis ; 105(6): 1596-1601, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33320046

RESUMEN

Maize chlorotic mottle virus (MCMV) has driven the emergence of maize lethal necrosis worldwide, where it threatens maize production in areas of East Africa, South America, and Asia. It is thought that MCMV transmission through seed may be important for introduction of the virus in new regions. Identification of infested seed lots is critical for preventing the spread of MCMV through seed. Although methods for detecting MCMV in leaf tissue are available, diagnostic methods for its detection in seed lots are lacking. In this study, ELISA, RT-PCR, and RT-qPCR were adapted for detection of MCMV in maize seed. Purified virions of MCMV isolates from Kansas, Mexico, and Kenya were then used to determine the virus detection thresholds for each diagnostic assay. No substantial differences in response were detected among the isolates in any of the three assays. The RT-PCR and a SYBR Green-based RT-qPCR assays were >3,000 times more sensitive than commercial ELISA for MCMV detection. For ELISA using seed extracts, selection of positive and negative controls was critical, most likely because of relatively high backgrounds. Use of seed soak solutions in ELISA detected MCMV with similar sensitivity to seed extracts, produced minimal background, and required substantially less labor. ELISA and RT-PCR were both effective for detecting MCMV in seed lots from Hawaii and Kenya, with ELISA providing a reliable and inexpensive diagnostic assay that could be implemented routinely in seed testing facilities.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Asunto(s)
Enfermedades de las Plantas , Tombusviridae , Kenia , Semillas
17.
Plant Dis ; 105(1): 96-107, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33197378

RESUMEN

Epidemics of wheat blast, caused the Triticum pathotype of Magnaporthe oryzae, were studied in the Santa Cruz del la Sierra region of Bolivia to quantify and compare the temporal dynamics of the disease under different growing conditions. Six plots of a susceptible wheat cultivar were planted at Cuatro Cañadas (CC), Okinawa 1 (OK1), and Okinawa 2 (OK2) in 2015. Spike blast incidence (INC) and severity (SEV) and leaf blast severity (LEAF) were quantified in each plot at regular intervals on a 10 × 10 grid (n = 100 clusters of spikes), beginning at head emergence (Feekes growth stage 10.5), for a total of nine assessments at CC, six at OK1, and six at OK2. Spike blast increased over time for 20 to 30 days before approaching a mean INC of 100% and a mean SEV of 60 to 75%. The logistic model was the most appropriate for describing the temporal dynamics of spike blast. The highest absolute rates of disease increase occurred earliest at OK1 and latest at OK2, and in all cases it coincided with major rain events. Estimated y0 values (initial blast intensity) were significantly (P < 0.05) higher at OK1 than at CC or OK2, whereas rL values (the logistic rate parameter) were significantly higher at OK2 than at CC or OK1. It took about 10 fewer days for SEV to reach 10, 15, or 20% at OK1 compared with OK2 and CC. Based on survival analyses, the survivor functions for time to 10, 15 and 20% SEV (ts) were significantly different between OK1 and the other locations, with the probabilities of SEV reaching the thresholds being highest at OK1. LEAF at 21 days after Feekes 10.5 had a significant effect on ts at OK1. For every 5% increase in LEAF, the chance of SEV reaching the thresholds by day 21 increased by 30 to 55%.


Asunto(s)
Epidemias , Magnaporthe , Ascomicetos , Bolivia , Enfermedades de las Plantas , Triticum
18.
Phytopathology ; 111(6): 954-965, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33174823

RESUMEN

Tomato production in Ohio protected culture systems is hindered by a soilborne disease complex consisting of corky root rot (Pyrenochaeta lycopersici), black dot root rot (Colletotrichum coccodes), Verticillium wilt (Verticillium dahliae), and root-knot (Meloidogyne hapla and M. incognita). In a survey of 71 high tunnels, C. coccodes was detected in 90% of high tunnels, and P. lycopersici (46%), V. dahliae (48%), and Meloidogyne spp. (45%) were found in nearly half of high tunnels. Anaerobic soil disinfestation (ASD) with wheat bran (20.2 Mg/ha) plus molasses (10.1 Mg/ha) and grafting onto 'Maxifort' or 'Estamino' rootstocks were evaluated in high tunnels on five farms. In post-ASD bioassays of trial soils, root and taproot rot severity were significantly reduced after ASD, and root-knot galling was also reduced by ASD. Soilborne pathogenic fungi were isolated less frequently from bioassay plants grown in ASD-treated soils than control soils. Similar results were observed in tomato plants grown in high tunnels. Root rot was significantly reduced by ASD in nearly all trials. Corky root rot severity was highest in nongrafted plants grown in nontreated soils, and the lowest levels of corky root rot were observed in 'Maxifort'-grafted plants. Black dot root rot severity was higher or equivalent in grafted plants compared with nongrafted plants. Root-knot severity was lower in plants grown in ASD-treated soils in high tunnels compared with plants grown in control soils, but grafting did not significantly decrease root-knot severity. However, soil treatment did not significantly affect yield, and grafting led to inconsistent impacts on yield.


Asunto(s)
Solanum lycopersicum , Verticillium , Anaerobiosis , Ascomicetos , Colletotrichum , Granjas , Enfermedades de las Plantas/prevención & control , Suelo
19.
Plant Dis ; 104(10): 2622-2633, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32804014

RESUMEN

The Triticum pathotype of Magnaporthe oryzae (MoT) that causes wheat blast has not yet been reported in the U.S., but the closely related M. oryzae Lolium pathotype (MoL), also capable of inciting blast, is found in several wheat growing regions. Since the epidemiology of MoL-incited wheat blast is unknown, it is difficult to project where and under what conditions this pathogen may be of importance. To quantify conditions favorable for MoL infection and temporal development of wheat blast, separate cohorts of wheat spikes were spray or point inoculated at anthesis and immediately subjected to different combinations of temperature (TEMP; 20, 25, and 30°C) and 100% relative humidity (RH) duration (0, 3, 6, 12, 24, and 48 h). Blast developed under all tested conditions, with both incidence (INC) and severity (SEV) increasing over time. The effects of TEMP on angular-transformed INC and SEV (arcINC and arcSEV) were significant (P < 0.05) in most cases, with the magnitude of the TEMP effect influenced by RH duration when spikes were spray-inoculated. Between 12 and 21 days after inoculation (DAI), there were significant, positive linear relationships between hours of high RH and arcINC and arcSEV at 25 and 30°C, but not at 20°C. The estimated rates of increase in transformed INC or SEV per hour increase in high RH duration were significantly higher at 30°C than at 25°C at 12 to 14 DAI, but not at 19 to 21 DAI. The highest estimated temporal rates of increase in INC and SEV and the shortest estimated incubation periods (5 to 8 days) occurred at 25 and 30°C, with 24 and 48 h of high RH immediately after inoculation. These results will contribute to ongoing efforts to better understand the epidemiology of wheat blast incited by MoL as well as MoT.


Asunto(s)
Lolium , Magnaporthe , Humedad , Enfermedades de las Plantas , Temperatura , Triticum
20.
Phytopathology ; 110(10): 1632-1646, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32370661

RESUMEN

Sometimes plant pathologists assess disease intensity when they are primarily interested in other response variables, such as yield loss or toxin concentration in harvested products. In these situations, disease intensity potentially could be considered a surrogate of yield or toxin. A surrogate is a variable which can be used instead of the variable of interest in the evaluation of experimental treatments or in making predictions. Surrogates can be measured earlier, more conveniently, or more cheaply than the variable of primary interest, but the reliability or validity of the surrogate must be shown. We demonstrate ways of quantifying two facets of surrogacy by using a protocol originally developed by Buyse and colleagues for medical research. Coefficient-of-determination type statistics can be used to conveniently assess the strength of surrogacy on a unitless scale. As a case study, we evaluated whether field severity of Fusarium head blight (i.e., FHB index) can be used as a surrogate for yield loss and deoxynivalenol (DON) toxin concentration in harvested wheat grain. Bivariate mixed models and corresponding approximations were fitted to data from 82 uniform fungicide trials conducted from 2008 to 2013. Individual-level surrogacy-for predicting the variable of interest (yield or DON) from the surrogate (index) in plots with the same treatment-was very low. Trial-level surrogacy-for predicting the effect of treatment (e.g., mean difference) for the variable of interest based on the effect of the treatment on the surrogate (index)-was moderate for yield, and only low for DON. Challenges in using disease severity as a surrogate for yield and toxin are discussed.


Asunto(s)
Fusarium , Tricotecenos , Enfermedades de las Plantas , Reproducibilidad de los Resultados , Triazoles , Triticum
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...