Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Toxicol ; 5: 1275980, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37808181

RESUMEN

Introduction: The US Environmental Protection Agency Toxicity Forecaster (ToxCast) program makes in vitro medium- and high-throughput screening assay data publicly available for prioritization and hazard characterization of thousands of chemicals. The assays employ a variety of technologies to evaluate the effects of chemical exposure on diverse biological targets, from distinct proteins to more complex cellular processes like mitochondrial toxicity, nuclear receptor signaling, immune responses, and developmental toxicity. The ToxCast data pipeline (tcpl) is an open-source R package that stores, manages, curve-fits, and visualizes ToxCast data and populates the linked MySQL Database, invitrodb. Methods: Herein we describe major updates to tcpl and invitrodb to accommodate a new curve-fitting approach. The original tcpl curve-fitting models (constant, Hill, and gain-loss models) have been expanded to include Polynomial 1 (Linear), Polynomial 2 (Quadratic), Power, Exponential 2, Exponential 3, Exponential 4, and Exponential 5 based on BMDExpress and encoded by the R package dependency, tcplfit2. Inclusion of these models impacted invitrodb (beta version v4.0) and tcpl v3 in several ways: (1) long-format storage of generic modeling parameters to permit additional curve-fitting models; (2) updated logic for winning model selection; (3) continuous hit calling logic; and (4) removal of redundant endpoints as a result of bidirectional fitting. Results and discussion: Overall, the hit call and potency estimates were largely consistent between invitrodb v3.5 and 4.0. Tcpl and invitrodb provide a standard for consistent and reproducible curve-fitting and data management for diverse, targeted in vitro assay data with readily available documentation, thus enabling sharing and use of these data in myriad toxicology applications. The software and database updates described herein promote comparability across multiple tiers of data within the US Environmental Protection Agency CompTox Blueprint.

2.
Comput Toxicol ; 24: 1-23, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37841081

RESUMEN

Data from a high-throughput human adrenocortical carcinoma assay (HT-H295R) for steroid hormone biosynthesis are available for >2000 chemicals in single concentration and 654 chemicals in multi-concentration (mc). Previously, a metric describing the effect size of a chemical on the biosynthesis of 11 hormones was derived using mc data referred to as the maximum mean Mahalanobis distance (maxmMd). However, mc HT-H295R assay data remain unavailable for many chemicals. This work leverages existing HT-H295R assay data by constructing structure-activity relationships to make predictions for data-poor chemicals, including: (1) identification of individual structural descriptors, known as ToxPrint chemotypes, associated with increased odds of affecting estrogen or androgen synthesis; (2) a random forest (RF) classifier using physicochemical property descriptors to predict HT-H295R maxmMd binary (positive or negative) outcomes; and, (3) a local approach to predict maxmMd binary outcomes using nearest neighbors (NNs) based on two types of chemical fingerprints (chemotype or Morgan). Individual chemotypes demonstrated high specificity (85-98%) for modulators of estrogen and androgen synthesis but with low sensitivity. The best RF model for maxmMd classification included 13 predicted physicochemical descriptors, yielding a balanced accuracy (BA) of 71% with only modest improvement when hundreds of structural features were added. The best two NN models for binary maxmMd prediction demonstrated BAs of 85 and 81% using chemotype and Morgan fingerprints, respectively. Using an external test set of 6302 chemicals (lacking HT-H295R data), 1241 were identified as putative estrogen and androgen modulators. Combined results across the three classification models (global RF model and two local NN models) predict that 1033 of the 6302 chemicals would be more likely to affect HT-H295R bioactivity. Together, these in silico approaches can efficiently prioritize thousands of untested chemicals for screening to further evaluate their effects on steroid biosynthesis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...