Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Physiol Heart Circ Physiol ; 320(2): H563-H574, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33164582

RESUMEN

Heart failure (HF) is associated with neurohumoral activation, which in turn leads to an increased peripheral resistance. In mesenteric vasculature, perivascular innervation plays relevant role maintaining vascular tonus and resistance. Therefore, we aimed to determine the possible alterations in superior mesenteric artery (SMA) perivascular innervation function in HF rats. HF was induced by coronary artery occlusion in male Wistar rats, and sham-operated (SO) rats were used as controls. After 12 wk, a greater vasoconstrictor response to electrical field stimulation (EFS) was observed in endothelium-intact and endothelium-denuded SMA of HF rats. Alpha-adrenoceptor antagonist phentolamine diminished this response in a higher magnitude in HF than in SO animals. However, the noradrenaline (NA) reuptake inhibitor desipramine increased EFS-induced vasoconstriction more in segments from HF rats. Besides, EFS-induced NA release was greater in HF animals, due to a higher tyrosine hydroxylase expression and activity. P2 purinoceptor antagonist suramin reduced EFS-induced vasoconstriction only in segments from SO rats, and adenosine 5'-triphosphate (ATP) release was lower in HF than in SO. Moreover, nitric oxide (NO) synthase inhibitor Nω-nitro-L-arginine methyl ester (L-NAME) enhanced EFS-induced vasoconstriction in a similar extent in both groups. HF was not associated with changes in EFS-induced NO release or the vasodilator response to NO donor sodium nitroprusside. In conclusion, HF postmyocardial infarction enhanced noradrenergic function and diminished purinergic cotransmission in SMA and did not change nitrergic innervation. The net effect was an increased sympathetic participation on the EFS-induced vasoconstriction that could help to understand the neurotransduction involved on the control of vascular tonus in HF.NEW & NOTEWORTHY This study reinforces the pivotal role of noradrenergic innervation in the regulation of mesenteric vascular tone in a rat model of heart failure. Moreover, our results highlight the counteracting role of ATP and NA reuptake, and help to understand the signaling pathways involved on the control of vascular tonus and resistance in heart failure postmyocardial infarction.


Asunto(s)
Adenosina Trifosfato/metabolismo , Insuficiencia Cardíaca/metabolismo , Norepinefrina/metabolismo , Transmisión Sináptica , Inhibidores de Captación Adrenérgica/farmacología , Antagonistas Adrenérgicos alfa/farmacología , Animales , Desipramina/farmacología , Inhibidores Enzimáticos/farmacología , Insuficiencia Cardíaca/fisiopatología , Masculino , Arterias Mesentéricas/efectos de los fármacos , Arterias Mesentéricas/metabolismo , Arterias Mesentéricas/fisiopatología , NG-Nitroarginina Metil Éster/farmacología , Donantes de Óxido Nítrico/farmacología , Nitroprusiato/farmacología , Fentolamina/farmacología , Antagonistas del Receptor Purinérgico P2/farmacología , Ratas , Ratas Wistar , Suramina/farmacología , Sistema Nervioso Simpático/efectos de los fármacos , Sistema Nervioso Simpático/metabolismo , Sistema Nervioso Simpático/fisiopatología , Vasoconstricción
2.
Med Sci Sports Exerc ; 52(10): 2117-2126, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32301852

RESUMEN

PURPOSE: The beneficial effects of exercise training on the cardiovascular system are well known. Because our knowledge of exercise-induced vascular function is still limited, we aimed to uncover the molecular mechanisms conditioning the improved vascular relaxation in muscular arteries. METHODS: Male Wistar-Kyoto rats with the same ability to run on a treadmill after maximal exercise tests were allocated to the following two groups: trained (Tr) (treadmill, 50%-60% of maximal capacity, 5 d·wk) and untrained (UnTr). After 13 wk, the femoral arteries were harvested and used for functional, structural, and molecular analyses. RESULTS: Acetylcholine (ACh)-induced relaxation and nitric oxide (NO) production were enhanced in arteries from Tr rats compared with UnTr rats. Tr arteries exhibited reduced microRNA (miRNA)-124a expression (whose target is caveolin-1), increased the density of caveolae aligned along the sarcolemma and reduced ACh-induced relaxation in the presence of methyl-ß-cyclodextrin, which disrupts caveolae. Higher endothelial NO synthase (eNOS) expression with lower miRNA-155 expression and the posttranslational modification of eNOS (phosphorylation of stimulatory Ser1177 and dephosphorylation of inhibitory Thr495) by the PI3-kinase/Akt1/2/3 pathway also contributed to the higher NO production induced by exercise training. Furthermore, increased Cu/Zn- and extracellular-superoxide dismutase expression and enhanced effects of their pharmacological scavenger activity on the ACh-induced response were observed in Tr arteries. CONCLUSIONS: The results of the present study provide a molecular basis for exercise-induced NO bioavailability in healthy femoral arteries. Increased caveolae domain and eNOS expression/activity in Tr arteries are associated with downregulation of miRNA-124a and -155, as well as are involved with higher antioxidant defense, subsequently inducing a favorable endothelium-dependent milieu in Tr arteries.


Asunto(s)
Músculo Liso Vascular/fisiología , Condicionamiento Físico Animal/fisiología , Vasodilatación/fisiología , Animales , Disponibilidad Biológica , Proteínas Portadoras/metabolismo , Caveolina 1/metabolismo , Regulación hacia Abajo , Arteria Femoral/fisiología , Masculino , MicroARNs/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas Endogámicas WKY
3.
Laryngoscope ; 130(12): E889-E895, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32159864

RESUMEN

OBJECTIVES/HYPOTHESIS: The objectives of this study were to evaluate laryngeal inflammation and mucosal integrity in a murine model of reflux disease and to assess the protective effects of topical agents including alginate, hyaluronic acid, and cashew gum. STUDY DESIGN: Animal study. METHODS: A surgical murine model of reflux disease was evaluated at 3 or 7 days postsurgery, and laryngeal samples were collected to measure inflammation (wet weight and myeloperoxidase [MPO]) and mucosal integrity (transepithelial resistance [TER] and mucosal permeability to fluorescein). Additional groups of animals were administered one of several topical agents (alginate, hyaluronic acid, or cashew gum) daily, and laryngeal inflammation and mucosal integrity were evaluated at 3 days postsurgery. RESULTS: At 3 days, and not 7 days postsurgery, we observed increased laryngeal wet weight and MPO, decreased laryngeal TER, and increased laryngeal mucosa permeability. Alginate partially decreased laryngeal inflammation (wet weight and not MPO) and dramatically improved laryngeal mucosal integrity. Conversely, hyaluronic acid eliminated the inflammation; however, it had no effect on laryngeal mucosal integrity impairment. Cashew gum eliminated laryngeal inflammation as well as the impairment in laryngeal mucosal integrity. CONCLUSIONS: This study shows that a surgical model of reflux disease induced laryngeal inflammation and impairment in laryngeal barrier function. These observed alterations were partially attenuated by alginate and hyaluronic acid and completely reversed by cashew gum. LEVEL OF EVIDENCE: NA Laryngoscope, 2020.


Asunto(s)
Alginatos/administración & dosificación , Reflujo Gastroesofágico/complicaciones , Ácido Hialurónico/administración & dosificación , Mucosa Laríngea/efectos de los fármacos , Mucosa Laríngea/patología , Laringitis/etiología , Laringitis/prevención & control , Gomas de Plantas/administración & dosificación , Anacardium , Animales , Modelos Animales de Enfermedad , Masculino , Ratones
4.
Am J Physiol Heart Circ Physiol ; 317(1): H87-H96, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31050559

RESUMEN

Impairment of the myogenic response can affect capillary hydrostatic pressure and contribute to peripheral edema and exercise intolerance, which are markers of heart failure (HF). The aim of this study was to assess the effects of exercise training (ET) on myogenic response in skeletal muscle resistance arteries and peripheral edema in HF rats, focusing on the potential signaling pathways involved in these adjustments. Male Wistar rats were submitted to either coronary artery occlusion or a sham-operated surgery. After 4 wk, an exercise test was performed, and the rats were divided into the following groups: untrained normal control (UNC) and untrained HF (UHF) and exercise- trained (on treadmill, 50-60% of maximal capacity) NC (TNC) and exercise-trained HF (THF). Caudal tibial artery (CTA) myogenic response was impaired in UHF compared with UNC, and ET restored this response in THF to NC levels and increased it in TNC. Rho kinase (ROCK) inhibitor abolished CTA myogenic response in the untrained and blunted it in exercise-trained groups. CTA-stored calcium (Ca2+) mobilization was higher in exercise-trained rats compared with untrained rats. The paw volume was higher in UHF rats, and ET decreased this response compared with UNC. Myogenic constriction was positively correlated with maximal running distance and negatively correlated with paw volume. The results demonstrate, for the first time, that HF impairs the myogenic response in skeletal muscle arteries, which contributes to peripheral edema in this syndrome. ET restores the myogenic response in skeletal muscle arteries improving Ca2+ sensitization and handling. Additionally, this paradigm also improves peripheral edema and exercise intolerance. NEW & NOTEWORTHY The novel and main finding of the present study is that moderate intensity exercise training restores the impaired myogenic response of skeletal muscle resistance arteries, exercise intolerance and peripheral edema in rats with heart failure. These results also show for the first time to our knowledge that exercise training improving calcium sensitization through the ROCK pathway and enhancing intracellular calcium handling could contribute to restoration of flow autoregulation to skeletal muscle in heart failure.


Asunto(s)
Edema/terapia , Terapia por Ejercicio , Tolerancia al Ejercicio , Insuficiencia Cardíaca/terapia , Músculo Esquelético/irrigación sanguínea , Condicionamiento Físico Animal , Arterias Tibiales/fisiopatología , Resistencia Vascular , Vasoconstricción , Animales , Señalización del Calcio , Proteínas de Unión al Calcio/metabolismo , Modelos Animales de Enfermedad , Edema/metabolismo , Edema/fisiopatología , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/fisiopatología , Masculino , Ratas Wistar , Recuperación de la Función , Carrera , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Arterias Tibiales/metabolismo , Quinasas Asociadas a rho/metabolismo
5.
Am J Physiol Heart Circ Physiol ; 314(4): H878-H887, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29351461

RESUMEN

Exercise training (ET) has emerged as a nonpharmacological therapy for cardiovascular diseases because of its helpful milieu for improving vascular function. The aim of the present study was to assess whether ET reverses the alterations in vascular reactivity observed in heart failure (HF)-related coronary arteries and to elucidate the molecular mechanisms involved in these adjustments. Male Wistar rats were subjected to either coronary artery ligation or sham operation. Four weeks after the surgery, rats were divided into two groups: untrained HF (UHF) and exercise-trained HF (THF). ET was conducted on a treadmill for 8 wk. An untrained SO group was included in the study as a normal control. ET restored the impaired acetylcholine (ACh)- and sodium nitroprusside-induced relaxation in coronary arteries to levels of the control. Oxidative stress and reduced nitric oxide (NO) production were observed in UHF, whereas ET restored both parameters to the levels of the control. Expression levels of endothelial NO synthase (eNOS) and soluble guanylyl cyclase subunits were increased in coronary arteries of UHF rats but reduced in THF rats. Tetrahydrobiopterin restored ACh-induced NO production in the UHF group, indicating that eNOS was uncoupled. ET increased the eNOS dimer-to-monomer ratio and expression of GTP cyclohydrolase 1, thus increasing NO bioavailability. Taken together, these findings demonstrate that ET reverses the dysfunction of the NO/soluble guanylyl cyclase pathway present in coronary arteries of HF rats. These effects of ET are associated with increased GTP cyclohydrolase 1 expression, restoration of NO bioavailability, and reduced oxidative stress through eNOS coupling. NEW & NOTEWORTHY The present study provides a molecular basis for the exercise-induced improvement in coronary arteries function in heart failure. Increasing the expression of GTP cyclohydrolase 1, the rate-limiting enzyme in the de novo biosynthesis of tetrahydrobiopterin, exercise training couples endothelial nitric oxide synthase, reduces oxidative stress, and increases nitric oxide bioavailability and sensitivity in coronary arteries of heart failure rats.


Asunto(s)
Vasos Coronarios/enzimología , Terapia por Ejercicio , Insuficiencia Cardíaca/terapia , Óxido Nítrico Sintasa de Tipo III/metabolismo , Vasodilatación , Animales , Vasos Coronarios/fisiopatología , Modelos Animales de Enfermedad , Tolerancia al Ejercicio , GTP Ciclohidrolasa/metabolismo , Insuficiencia Cardíaca/enzimología , Insuficiencia Cardíaca/fisiopatología , Masculino , Óxido Nítrico/metabolismo , Estrés Oxidativo , Ratas Wistar , Transducción de Señal , Guanilil Ciclasa Soluble/metabolismo
6.
J Hypertens ; 31(5): 916-26, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23429663

RESUMEN

OBJECTIVE: To study the effect of aerobic exercise training on sympathetic, nitrergic and sensory innervation function in superior mesenteric artery from spontaneously hypertensive rats (SHRs). METHODS: De-endothelized vascular rings from sedentary and trained SHRs (treadmill 12 weeks) were used. Vasomotor responses to electrical field stimulation (EFS), noradrenaline, nitric oxide donor DEA-NO and calcitonin gene-related peptide (CGRP) were studied. Neuronal nitric oxide synthase (nNOS) expression and nitric oxide, superoxide anions (O(2.-)), noradrenaline and CGRP levels were also determined. RESULTS: Aerobic exercise training decreased vasoconstrictor response to EFS but increased noradrenaline response. Phentolamine decreased while N(ω)-nitro-(L)-arginine methyl ester ((L)-NAME) increased the response to EFS; the effect of both drugs was greater in trained animals. Training also decreased noradrenaline release and O(2.-) production and increased nNOS expression, nitric oxide release and the vasodilator response to DEA-NO. The O(2.-) scavenger tempol increased DEA-NO-induced vasodilation only in sedentary rats. The EFS-induced contraction was increased to a similar extent in both experimental groups by preincubation with CGRP (8-37). CGRP release and vasodilator response were not modified by training. CONCLUSION: Aerobic exercise training decreases contractile response to EFS in mesenteric artery from SHRs. This effect is the net result of decreased noradrenaline release, increased sensitivity to the vasoconstrictive effects of noradrenaline and increased neuronal nitric oxide release and bioavailability. These modifications might contribute to the beneficial effects of aerobic exercise training on blood pressure.


Asunto(s)
Hipertensión/metabolismo , Arterias Mesentéricas/metabolismo , Óxido Nítrico/metabolismo , Norepinefrina/metabolismo , Condicionamiento Físico Animal , Animales , Disponibilidad Biológica , Estimulación Eléctrica , Masculino , Arterias Mesentéricas/inervación , Óxido Nítrico Sintasa de Tipo I/fisiología , Ratas , Ratas Endogámicas SHR , Vasoconstricción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA