Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Neuroscience ; 224: 160-71, 2012 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-22917612

RESUMEN

DYT1 dystonia is a dominantly inherited, disabling neurological disorder with low penetrance that is caused by the deletion of a glutamic acid (ΔE) in the protein torsinA. We previously showed that torsinA(wt) is degraded through macroautophagy while torsinA(ΔE) is targeted to the ubiquitin-proteasome pathway (UPP). The different catabolism of torsinA(wt) and (ΔE) potentially modulates torsinA(wt):torsinA(ΔE) stoichiometry. Therefore, gaining a mechanistic understanding on how the protein quality control machinery clears torsinA(ΔE) in neurons may uncover important regulatory steps in disease pathogenesis. Here, we asked whether F-box/G-domain protein 1 (FBG1), a ubiquitin ligase known to degrade neuronal glycoproteins, is implicated in the degradation of torsinA(ΔE) by the UPP. In a first set of studies completed in cultured cells, we show that FBG1 interacts with and influences the steady-state levels of torsinA(wt) and (ΔE). Interestingly, FBG1 achieves this effect promoting the degradation of torsinA not only through the UPP, but also by macroautophagy. To determine the potential clinical significance of these findings, we asked if eliminating expression of Fbg1 triggers a motor phenotype in torsinA(ΔE) knock in (KI) mice, a model of non-manifesting DYT1 mutation carriers. We detected differences in spontaneous locomotion between aged torsinA(ΔE) KI-Fbg1 knock out and control mice. Furthermore, neuronal levels of torsinA were unaltered in Fbg1 null mice, indicating that redundant systems likely compensate in vivo for the absence of this ubiquitin ligase. In summary, our studies support a non-essential role for FBG1 on the degradation of torsinA and uncover a novel link of FBG1 to the autophagy pathway.


Asunto(s)
Autofagia/fisiología , Proteínas F-Box/metabolismo , Chaperonas Moleculares/metabolismo , Transducción de Señal/fisiología , Animales , Western Blotting , Modelos Animales de Enfermedad , Distonía Muscular Deformante/metabolismo , Técnicas de Sustitución del Gen , Inmunoprecipitación , Ratones , Ratones Noqueados , Microscopía Confocal , Complejo de la Endopetidasa Proteasomal/metabolismo , Transfección , Ubiquitina/metabolismo
2.
Gene Ther ; 13(6): 576-81, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16355113

RESUMEN

Suppressing the expression of toxic genes through RNAi holds great promise for the treatment of human disease. Allele-specific approaches have now been used to silence dominant toxic genes implicated in several neurological disorders. Here, we review strategies used to achieve allele-specific silencing in light of recent developments in the field of RNAi biology. In particular, new insights into siRNA and miRNA processing may be used to improve efficiency and specificity of RNAi therapy. We further discuss steps that can be taken to maximize the therapeutic benefits of this powerful technology.


Asunto(s)
Terapia Genética/métodos , Enfermedades del Sistema Nervioso/terapia , Interferencia de ARN , Alelos , Animales , Predicción , Genes Dominantes , Terapia Genética/tendencias , Humanos , MicroARNs/administración & dosificación , MicroARNs/genética , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/genética
3.
J Biol Chem ; 276(48): 44889-97, 2001 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-11572863

RESUMEN

Intracellular inclusions are a unifying feature of polyglutamine (polyQ) neurodegenerative diseases, yet each polyQ disease displays a unique pattern of neuronal degeneration. This implies that the protein context of expanded polyQ plays an important role in establishing selective neurotoxicity. Here, in studies of the spinocerebellar ataxia type 3 disease protein ataxin-3, we demonstrate that the protein sequence surrounding polyQ specifies the constituents of nuclear inclusions (NI) formed by the disease protein. The nuclear proteins cAMP response element-binding protein-binding protein (CBP) and Mastermind-like-1 strongly colocalize only to NI formed by full-length ataxin-3, whereas the splicing factor SC35 colocalizes only to NI formed by a polyQ-containing, carboxyl-terminal fragment of ataxin-3. These differences in NI formation reflect specific protein interactions normally undertaken by ataxin-3, as both normal and mutant full-length ataxin-3 co-immunoprecipitate with CBP and sediment on density gradients as macromolecular complexes. Moreover, normal ataxin-3 represses cAMP response element-binding protein-mediated transcription, indicating a functional consequence of ataxin-3 interactions with CBP. Finally, we show that mutant ataxin-3 forms insoluble intranuclear complexes, or microaggregates, before NI can be detected, implying a precursor-product relationship. These results suggest that protein context-dependent recruitment of nuclear proteins to intranuclear microaggregates, and subsequently to NI, may contribute to selective neurotoxicity in polyQ diseases.


Asunto(s)
Núcleo Celular/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Péptidos/genética , Péptidos/metabolismo , Ataxina-3 , Células HeLa , Humanos , Inmunohistoquímica , Microscopía Confocal , Microscopía Fluorescente , Mutación , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Plásmidos/metabolismo , Pruebas de Precipitina , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Represoras , Fracciones Subcelulares , Transactivadores/metabolismo , Transfección
4.
Hum Mol Genet ; 9(19): 2811-20, 2000 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-11092757

RESUMEN

At least eight dominant human neurodegenerative diseases are due to the expansion of a polyglutamine within the disease proteins. This confers toxicity on the proteins and is associated with nuclear inclusion formation. Recent findings indicate that molecular chaperones can modulate polyglutamine pathogenesis, but the basis of polyglutamine toxicity and the mechanism by which chaperones suppress neurodegeneration remains unknown. In a Drosophila: disease model, we demonstrate that chaperones show substrate specificity for polyglutamine protein, as well as synergy in suppression of neurotoxicity. Our analysis also reveals that chaperones alter the solubility properties of the protein, indicating that chaperone modulation of neurodegeneration in vivo is associated with altered biochemical properties of the mutant polyglutamine protein. These findings have implications for these and other human neurodegenerative diseases associated with abnormal protein aggregation.


Asunto(s)
Drosophila melanogaster , Proteínas de Choque Térmico/metabolismo , Trastornos Heredodegenerativos del Sistema Nervioso/metabolismo , Chaperonas Moleculares/metabolismo , Péptidos/metabolismo , Expansión de Repetición de Trinucleótido/genética , Animales , Modelos Animales de Enfermedad , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Genotipo , Proteínas del Choque Térmico HSP40 , Proteínas HSP70 de Choque Térmico/química , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/genética , Trastornos Heredodegenerativos del Sistema Nervioso/genética , Histocitoquímica , Humanos , Proteína Huntingtina , Proteínas de Insectos/química , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Mutación , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Péptidos/química , Péptidos/genética , Fenotipo , Retina/metabolismo , Retina/patología , Solubilidad , Especificidad por Sustrato
6.
Brain Pathol ; 10(2): 293-9, 2000 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-10764049

RESUMEN

Polyglutamine expansion is now recognized to be a major cause of inherited human neurodegenerative disease. The polyglutamine expansion diseases identified so far are slowly progressive disorders in which distinct yet overlapping brain regions are selectively vulnerable to degeneration. Despite their clinical differences these diseases likely share a common pathogenic mechanism, occurring at the protein level and centered on an abnormal conformation of expanded polyglutamine in the respective disease proteins. Recently there has been remarkable progress in our understanding of polyglutamine disease, but still there are many unanswered questions. In this review, I first outline some of the shared features of polyglutamine diseases and then discuss several issues relevant to an understanding of pathogenesis, paying particular attention to possible mechanisms of neurotoxicity.


Asunto(s)
Enfermedades Neurodegenerativas/genética , Péptidos/genética , Animales , Apoptosis/fisiología , Muerte Celular/fisiología , Humanos , Mutación/fisiología , Enfermedades Neurodegenerativas/fisiopatología , Neuronas/fisiología , Péptidos/química , Conformación Proteica
7.
Nat Genet ; 23(4): 425-8, 1999 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-10581028

RESUMEN

At least eight inherited human neurodegenerative diseases are caused by expansion of a polyglutamine domain within the respective proteins. This confers dominant toxicity on the proteins, leading to dysfunction and loss of neurons. Expanded polyglutamine proteins form aggregates, including nuclear inclusions (NI), within neurons, possibly due to misfolding of the proteins. NI are ubiquitinated and sequester molecular chaperone proteins and proteasome components, suggesting that disease pathogenesis includes activation of cellular stress pathways to help refold, disaggregate or degrade the mutant disease proteins. Overexpression of specific chaperone proteins reduces polyglutamine aggregation in transfected cells, but whether this alters toxicity is unknown. Using a Drosophila melanogaster model of polyglutamine disease, we show that directed expression of the molecular chaperone HSP70 suppresses polyglutamine-induced neurodegeneration in vivo. Suppression by HSP70 occurred without a visible effect on NI formation, indicating that polyglutamine toxicity can be dissociated from formation of large aggregates. Our studies indicate that HSP70 or related molecular chaperones may provide a means of treating these and other neurodegenerative diseases associated with abnormal protein conformation and toxicity.


Asunto(s)
Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/fisiología , Degeneración Nerviosa/genética , Degeneración Nerviosa/prevención & control , Péptidos/genética , Péptidos/fisiología , Animales , Ataxina-3 , Modelos Animales de Enfermedad , Drosophila melanogaster/genética , Drosophila melanogaster/fisiología , Ojo/patología , Femenino , Expresión Génica , Humanos , Enfermedad de Machado-Joseph/genética , Enfermedad de Machado-Joseph/terapia , Masculino , Degeneración Nerviosa/etiología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/fisiología , Enfermedades Neurodegenerativas/terapia , Proteínas Nucleares , Estructura Terciaria de Proteína/genética , Proteínas Represoras , Transfección
8.
Hum Mol Genet ; 8(13): 2377-85, 1999 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-10556285

RESUMEN

Spinocerebellar ataxia type-3 or Machado-Joseph disease (SCA3/MJD) is a member of the CAG/polyglutamine repeat disease family. In this family of disorders, a normally polymorphic CAG repeat becomes expanded, resulting in expression of an expanded polyglutamine domain in the disease gene product. Experimental models of polyglutamine disease implicate the nucleus in pathogenesis; however, the link between intranuclear expression of expanded polyglutamine and neuronal dysfunction remains unclear. Here we demonstrate that ataxin-3, the disease protein in SCA3/MJD, adopts a unique conformation when expressed within the nucleus of transfected cells. The monoclonal antibody 1C2 is known preferentially to bind expanded polyglutamine, but we find that it also binds a fragment of ataxin-3 containing a normal glutamine repeat. In addition, expression of ataxin-3 within the nucleus exposes the glutamine domain of the full-length non-pathological protein, allowing it to bind the monoclonal antibody 1C2. Fractionation and immunochemical experiments indicate that this novel conformation of intranuclear ataxin-3 is not due to proteolysis, suggesting instead that association with nuclear protein(s) alters the structure of full-length ataxin-3 which exposes the polyglutamine domain. This conformationally altered ataxin-3 is bound to the nuclear matrix. The pathological form of ataxin-3 with an expanded polyglutamine domain also associates with the nuclear matrix. These data suggest that an early event in the pathogenesis of SCA3/MJD may be an altered conformation of ataxin-3 within the nucleus that exposes the polyglutamine domain.


Asunto(s)
Proteínas del Tejido Nervioso/metabolismo , Matriz Nuclear/metabolismo , Péptidos/química , Anticuerpos Monoclonales , Ataxina-3 , Western Blotting , Línea Celular , Epítopos , Técnica del Anticuerpo Fluorescente , Humanos , Enfermedad de Machado-Joseph/genética , Microscopía Confocal , Proteínas del Tejido Nervioso/química , Proteínas Nucleares , Unión Proteica , Conformación Proteica , Estructura Terciaria de Proteína , Proteínas Represoras , Transfección
9.
J Neurosci ; 19(23): 10338-47, 1999 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-10575031

RESUMEN

Polyglutamine (polygln) diseases are a group of inherited neurodegenerative disorders characterized by protein misfolding and aggregation. Here, we investigate the role in polygln disease of heat shock proteins (Hsps), the major class of molecular chaperones responsible for modulating protein folding in the cell. In transfected COS7 and PC12 neural cells, we show that Hsp40 and Hsp70 chaperones localize to intranuclear aggregates formed by either mutant ataxin-3, the disease protein in spinocerebellar ataxia type 3/Machado-Joseph disease (SCA3/MJD), or an unrelated green fluorescent protein fusion protein containing expanded polygln. We further demonstrate that expression of expanded polygln protein elicits a stress response in cells as manifested by marked induction of Hsp70. Studies of SCA3/MJD disease brain confirm these findings, showing localization of Hsp40 and, less commonly, Hsp70 chaperones to intranuclear ataxin-3 aggregates. In transfected cells, overexpression of either of two Hsp40 chaperones, the DNAJ protein homologs HDJ-1 and HDJ-2, suppresses aggregation of truncated or full-length mutant ataxin-3. Finally, we extend these studies to a PC12 neural model of polygln toxicity in which we demonstrate that overexpression of HDJ-1 suppresses polygln aggregation with a parallel decrease in toxicity. These results suggest that expanded polygln protein induces a stress response and that specific molecular chaperones may aid the handling of misfolded or aggregated polygln protein in neurons. This study has therapeutic implications because it suggests that efforts to increase chaperone activity may prove beneficial in this class of diseases.


Asunto(s)
Proteínas de Choque Térmico/fisiología , Chaperonas Moleculares/fisiología , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/fisiopatología , Péptidos/genética , Animales , Ataxina-3 , Células COS , Proteínas del Choque Térmico HSP40 , Células HeLa , Humanos , Enfermedad de Machado-Joseph/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Neurotoxinas/metabolismo , Proteínas Nucleares , Células PC12/metabolismo , Péptidos/fisiología , Péptidos/envenenamiento , Ratas , Proteínas Represoras , Estrés Fisiológico/metabolismo , Distribución Tisular
10.
Hum Mol Genet ; 8(4): 673-82, 1999 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-10072437

RESUMEN

Spinocerebellar ataxia type 3, also known as Machado-Joseph disease (SCA3/MJD), is one of at least eight inherited neurodegenerative diseases caused by expansion of a polyglutamine tract in the disease protein. Here we present two lines of evidence implicating the ubiquitin-proteasome pathway in SCA3/MJD pathogenesis. First, studies of both human disease tissue and in vitro models showed redistribution of the 26S proteasome complex into polyglutamine aggregates. In neurons from SCA3/MJD brain, the proteasome localized to intranuclear inclusions containing the mutant protein, ataxin-3. In transfected cells, the proteasome redistributed into inclusions formed by three expanded polyglutamine proteins: a pathologic ataxin-3 fragment, full-length mutant ataxin-3 and an unrelated GFP-polyglutamine fusion protein. Inclusion formation by the full-length mutant ataxin-3 required nuclear localization of the protein and occurred within specific subnuclear structures recently implicated in the regulation of cell death, promyelocytic leukemia antigen oncogenic domains. In a second set of experiments, inhibitors of the proteasome caused a repeat length-dependent increase in aggregate formation, implying that the proteasome plays a direct role in suppressing polyglutamine aggregation in disease. These results support a central role for protein misfolding in the pathogenesis of SCA3/MJD and suggest that modulating proteasome activity is a potential approach to altering the progression of this and other polyglutamine diseases.


Asunto(s)
Cisteína Endopeptidasas/metabolismo , Enfermedad de Machado-Joseph/enzimología , Complejos Multienzimáticos/metabolismo , Péptidos/metabolismo , Acetilcisteína/análogos & derivados , Acetilcisteína/farmacología , Adulto , Animales , Ataxina-3 , Encéfalo/enzimología , Encéfalo/patología , Química Encefálica , Células COS , Línea Celular , Núcleo Celular/enzimología , Cisteína Endopeptidasas/efectos de los fármacos , Inhibidores de Cisteína Proteinasa/farmacología , Relación Dosis-Respuesta a Droga , Células HeLa , Humanos , Inmunohistoquímica , Cuerpos de Inclusión/enzimología , Leucemia Promielocítica Aguda , Enfermedad de Machado-Joseph/metabolismo , Enfermedad de Machado-Joseph/patología , Masculino , Complejos Multienzimáticos/efectos de los fármacos , Mutación , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares , Proteínas Oncogénicas/química , Células PC12 , Péptidos/efectos de los fármacos , Complejo de la Endopetidasa Proteasomal , Estructura Terciaria de Proteína , Ratas , Ratas Sprague-Dawley , Proteínas Represoras
12.
J Cell Biol ; 143(6): 1457-70, 1998 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-9852144

RESUMEN

The inherited neurodegenerative diseases caused by an expanded glutamine repeat share the pathologic feature of intranuclear aggregates or inclusions (NI). Here in cell-based studies of the spinocerebellar ataxia type-3 disease protein, ataxin-3, we address two issues central to aggregation: the role of polyglutamine in recruiting proteins into NI and the role of nuclear localization in promoting aggregation. We demonstrate that full-length ataxin-3 is readily recruited from the cytoplasm into NI seeded either by a pathologic ataxin-3 fragment or by a second unrelated glutamine-repeat disease protein, ataxin-1. Experiments with green fluorescence protein/polyglutamine fusion proteins show that a glutamine repeat is sufficient to recruit an otherwise irrelevant protein into NI, and studies of human disease tissue and a Drosophila transgenic model provide evidence that specific glutamine-repeat-containing proteins, including TATA-binding protein and Eyes Absent protein, are recruited into NI in vivo. Finally, we show that nuclear localization promotes aggregation: an ataxin-3 fragment containing a nonpathologic repeat of 27 glutamines forms inclusions only when targeted to the nucleus. Our findings establish the importance of the polyglutamine domain in mediating recruitment and suggest that pathogenesis may be linked in part to the sequestering of glutamine-containing cellular proteins. In addition, we demonstrate that the nuclear environment may be critical for seeding polyglutamine aggregates.


Asunto(s)
Núcleo Celular/fisiología , Proteínas de Drosophila , Cuerpos de Inclusión/fisiología , Enfermedad de Machado-Joseph/genética , Proteínas del Tejido Nervioso/fisiología , Péptidos/metabolismo , Animales , Animales Modificados Genéticamente , Ataxina-3 , Núcleo Celular/ultraestructura , Proteínas de Unión al ADN/metabolismo , Drosophila , Proteínas del Ojo/metabolismo , Humanos , Cuerpos de Inclusión/ultraestructura , Enfermedad de Machado-Joseph/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/metabolismo , Fragmentos de Péptidos/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Represoras , TATA Box , Proteína de Unión a TATA-Box , Factores de Transcripción/metabolismo , Transfección
13.
Cell ; 93(6): 939-49, 1998 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-9635424

RESUMEN

Spinocerebellar ataxia type 3 (SCA3/MJD) is one of at least eight human neurodegenerative diseases caused by glutamine-repeat expansion. We have recreated glutamine-repeat disease in Drosophila using a segment of the SCA3/MJD protein. Targeted expression of the protein with an expanded polyglutamine repeat led to nuclear inclusion (NI) formation and late-onset cell degeneration. Differential sensitivity to the mutant transgene was observed among different cell types, with neurons being particularly susceptible; NI formation alone was not sufficient for degeneration. The viral antiapoptotic gene P35 mitigated polyglutamine-induced degeneration in vivo. Our results demonstrate that cellular mechanisms of human glutamine-repeat disease are conserved in invertebrates. This fly model will aid in identifying additional factors that modulate neurodegeneration.


Asunto(s)
Cuerpos de Inclusión/genética , Enfermedad de Machado-Joseph/patología , Degeneración Nerviosa/genética , Proteínas del Tejido Nervioso/genética , Péptidos , Animales , Animales Modificados Genéticamente , Apoptosis , Ataxina-3 , Baculoviridae , Núcleo Celular/patología , Drosophila , Ojo/patología , Marcación de Gen , Humanos , Proteínas Inhibidoras de la Apoptosis , Larva , Enfermedad de Machado-Joseph/genética , Proteínas Nucleares , Especificidad de Órganos , Péptidos/genética , Proteínas Recombinantes de Fusión , Proteínas Represoras , Repeticiones de Trinucleótidos , Proteínas Virales/genética , Proteínas Virales/fisiología
14.
J Neurochem ; 70(3): 1054-60, 1998 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-9489725

RESUMEN

Androgens are known to alter the morphology, survival, and axonal regeneration of lower motor neurons in vivo. To understand better the molecular mechanisms of androgen action in neurons, we created a model system by stably expressing the human androgen receptor (AR) in motor neuron hybrid cells. Motor neuron hybrid cells express markers consistent with anterior horn cells and can be differentiated into a neuronal phenotype. When differentiated in the presence of androgen, AR-expressing cells, but not control cells, exhibit a dose-dependent change in morphology: androgen-treated cells develop larger cell bodies and broader neuritic processes while continuing to express neuronal markers. In addition, androgen promotes the survival of AR-expressing cells, but not control cells, under low-serum conditions. Our results demonstrate a direct trophic effect of androgens on lower motor neurons, mediated through the AR expressed in this population of neurons.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Células Híbridas/citología , Neuronas Motoras/citología , Neuronas Motoras/efectos de los fármacos , Testosterona/farmacología , Biomarcadores , Supervivencia Celular/efectos de los fármacos , Colina O-Acetiltransferasa/genética , Medios de Cultivo , ADN Complementario , Regulación Enzimológica de la Expresión Génica , Humanos , Células Híbridas/química , Células Híbridas/enzimología , Proteínas Asociadas a Microtúbulos/genética , Degeneración Nerviosa , Proteínas de Neurofilamentos/genética , Fenotipo , Receptores Androgénicos/fisiología , Transfección
15.
Neuron ; 19(2): 333-44, 1997 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-9292723

RESUMEN

The mechanism of neurodegeneration in CAG/polyglutamine repeat expansion diseases is unknown but is thought to occur at the protein level. Here, in studies of spinocerebellar ataxia type 3, also known as Machado-Joseph disease (SCA3/MJD), we show that the disease protein ataxin-3 accumulates in ubiquitinated intranuclear inclusions selectively in neurons of affected brain regions. We further provide evidence in vitro for a model of disease in which an expanded polyglutamine-containing fragment recruits full-length protein into insoluble aggregates. Together with recent findings from transgenic models, our results suggest that intranuclear aggregation of the expanded protein is a unifying feature of CAG/polyglutamine diseases and may be initiated or catalyzed by a glutamine-containing fragment of the disease protein.


Asunto(s)
Glutamina/metabolismo , Enfermedad de Machado-Joseph/metabolismo , Proteínas/metabolismo , Humanos , Inmunohistoquímica , Modelos Neurológicos
16.
Ann Neurol ; 41(4): 453-62, 1997 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-9124802

RESUMEN

Machado-Joseph disease (MJD) is one of at least six neurodegenerative diseases caused by expansion of a CAG repeat encoding a polyglutamine tract in the disease protein. To study the molecular mechanism of disease, we isolated both normal and expanded repeat MJD1 cDNAs, and generated antiserum against the recombinant gene product, called ataxin-3. Using this antiserum, we demonstrate that in disease tissue, both the normal and mutant ataxin-3 protein are expressed throughout the body and in all regions of the brain examined, including areas generally spared by disease. In brain, certain regions (the striatum, for example) express ataxin-3 in only a limited subset of neurons. Immunolocalization studies in normal and disease brain, and in transfected cells, indicate that ataxin-3 is predominantly a cytoplasmic protein that localizes to neuronal processes as well. We conclude that in MJD, as in other polyglutamine repeat diseases, cellular expression of the disease gene is not itself sufficient to cause neuronal degeneration; other cell-specific factors must be invoked to explain the restricted neuropathology seen in MJD. The restricted expression of ataxin-3 in certain regions, however, may influence the pattern of neurodegeneration and provide clues to the protein's function.


Asunto(s)
Química Encefálica , Citoplasma/química , Enfermedad de Machado-Joseph/patología , Proteínas del Tejido Nervioso/análisis , Adulto , Ataxina-3 , Atrofia , Secuencia de Bases , Línea Celular , Núcleo Celular/patología , ADN Complementario/análisis , Femenino , Regulación de la Expresión Génica , Humanos , Immunoblotting , Inmunohistoquímica , Enfermedad de Machado-Joseph/genética , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares , Puente/patología , Secuencias Repetitivas de Ácidos Nucleicos , Proteínas Represoras , Médula Espinal/patología , Transfección
17.
Neurobiol Dis ; 3(4): 313-23, 1997.
Artículo en Inglés | MEDLINE | ID: mdl-9173928

RESUMEN

Spinal and bulbar muscular atrophy (SBMA) is an inherited form of lower motor neuron degeneration caused by expansion of a CAG repeat in the androgen receptor (AR) gene. To study the mechanism by which this mutation causes neuronal pathology, we stably transfected a motor neuron hybrid cell line with human AR cDNAs containing either 24 or 65 repeats (AR24 and AR65, respectively). Both forms of receptor were able to bind ligand and activate transcription of a reporter construct equally well. Likewise, the subcellular localizations of AR24 and AR65 were similar, in both the presence and the absence of ligand. AR24- and AR65-expressing clones were phenotypically indistinguishable. They survived equally well after differentiation and were equally susceptible to damage by oxidative stress. Our studies thus demonstrate that, in a neuronal system, the expanded repeat AR functions like the normal repeat AR in several important ways. Because levels of AR65 expression were consistently lower than levels of AR24 expression, we propose that the loss of function of AR seen in SBMA may be due to decreased levels of receptor expression rather than to a difference in intrinsic properties. The postulated gain of function responsible for neuronal degeneration remains to be determined.


Asunto(s)
Glutamina/genética , Neuronas/metabolismo , Receptores Androgénicos/genética , Secuencias Repetitivas de Ácidos Nucleicos , Animales , Línea Celular , Supervivencia Celular , ADN Complementario/genética , Humanos , Ratones/embriología , Neuronas/fisiología , Transfección
18.
Annu Rev Neurosci ; 19: 79-107, 1996.
Artículo en Inglés | MEDLINE | ID: mdl-8833437

RESUMEN

Trinucleotide repeat expansion is increasingly recognized as a cause of neurogenetic diseases. To date, seven diseases have been identified as expanded repeat disorders: the fragile X syndrome of mental retardation both FRAXA and FRAXE loci), myotonic dystrophy, X-linked spinal and bulbar muscular atrophy, Huntington's disease, spinocerebellar ataxia type I, dentatorubral-pallidoluysian atrophy, and Machado-Joseph disease. All are neurologic disorders, affecting one or more regions of the neuraxis. Moreover, five of the seven (the last five above) are progressive neurodegenerative disorders whose strikingly similar mutations suggest a common mechanism of neuronal degeneration. In this article we discuss specific characteristics of each trinucleotide repeat disease, review their shared clinical and genetic features, and address possible molecular mechanisms underlying the neuropathology in each disease. Particular attention is paid to the neurodegenerative diseases, all of which are caused by CAG repeats encoding polyglutamine tracts in the disease gene protein.


Asunto(s)
Enfermedades del Sistema Nervioso Central/genética , Repeticiones de Trinucleótidos , Síndrome del Cromosoma X Frágil/genética , Humanos , Enfermedad de Huntington/genética , Discapacidad Intelectual/genética , Enfermedad de Machado-Joseph/genética , Atrofia Muscular/genética , Distrofia Miotónica/genética , Degeneraciones Espinocerebelosas/genética
19.
Ann Neurol ; 36(6): 814-22, 1994 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-7998766

RESUMEN

Expansion of trinucleotide repeats is now recognized as a major cause of neurological disease. At least seven disorders result from trinucleotide repeat expansion: X-linked spinal and bulbar muscular atrophy (SBMA), two fragile X syndromes of mental retardation (FRAXA and FRAXE), myotonic dystrophy, Huntington's disease, spinocerebellar ataxia type 1 (SCA1), and dentatorubral-pallidoluysian atrophy (DRPLA). The expanded trinucleotide repeats are unstable, and the phenomenon of anticipation, i.e., worsening of disease phenotype over successive generations, correlates with increasing expansion size. In this review, we compare the clinical and molecular features of the trinucleotide repeat diseases, which may be classified into two types. Fragile X and myotonic dystrophy are multisystem disorders usually associated with large expansions of untranslated repeats, while the four neurodegenerative disorders, SBMA, Huntington's disease, SCA1, and DRPLA, are caused by smaller expansions of CAG repeats within the protein coding portion of the gene. CAG repeats encode polyglutamine tracts. Polyglutamine tract expansion thus appears to be a common mechanism of inherited neurodegenerative disease. Although polyglutamine tract lengthening presumably has a toxic gain of function effect in the CAG trinucleotide repeat disorders, the basis of this neuronal toxicity remains unknown.


Asunto(s)
Enfermedades del Sistema Nervioso/genética , Secuencias Repetitivas de Ácidos Nucleicos/genética , Humanos , Oligodesoxirribonucleótidos/genética
20.
Am J Ophthalmol ; 118(4): 518-23, 1994 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-7943133

RESUMEN

Two patients developed unilateral occipitotemporal infarcts that produced inferior quadrantic achromatopsia and an accompanying superior quadrantanopia. Magnetic resonance imaging and single-photon emission computed tomographic studies of both patients supported the current view that color vision is encoded in the lingual and fusiform gyri. Although the quadrantic defect in color processing was profound, neither patient was aware of it. Simple bedside testing of patients with superior quadrantanopia may disclose an unrecognized quadrantic achromatopsia.


Asunto(s)
Infarto Cerebral/complicaciones , Defectos de la Visión Cromática/etiología , Anciano , Infarto Cerebral/diagnóstico , Femenino , Humanos , Masculino , Persona de Mediana Edad , Lóbulo Occipital/diagnóstico por imagen , Lóbulo Occipital/patología , Cintigrafía , Lóbulo Temporal/diagnóstico por imagen , Lóbulo Temporal/patología , Pruebas del Campo Visual , Campos Visuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA