Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Int Forum Allergy Rhinol ; 12(4): 327-680, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35373533

RESUMEN

BACKGROUND: The literature regarding clinical olfaction, olfactory loss, and olfactory dysfunction has expanded rapidly over the past two decades, with an exponential rise in the past year. There is substantial variability in the quality of this literature and a need to consolidate and critically review the evidence. It is with that aim that we have gathered experts from around the world to produce this International Consensus on Allergy and Rhinology: Olfaction (ICAR:O). METHODS: Using previously described methodology, specific topics were developed relating to olfaction. Each topic was assigned a literature review, evidence-based review, or evidence-based review with recommendations format as dictated by available evidence and scope within the ICAR:O document. Following iterative reviews of each topic, the ICAR:O document was integrated and reviewed by all authors for final consensus. RESULTS: The ICAR:O document reviews nearly 100 separate topics within the realm of olfaction, including diagnosis, epidemiology, disease burden, diagnosis, testing, etiology, treatment, and associated pathologies. CONCLUSION: This critical review of the existing clinical olfaction literature provides much needed insight and clarity into the evaluation, diagnosis, and treatment of patients with olfactory dysfunction, while also clearly delineating gaps in our knowledge and evidence base that we should investigate further.


Asunto(s)
Hipersensibilidad , Olfato , Consenso , Costo de Enfermedad , Humanos
2.
BMC Nephrol ; 23(1): 36, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-35042465

RESUMEN

BACKGROUND: Olfactory and gustatory changes may contribute to poor appetite and food aversion in chronic kidney disease (CKD), though the prevalence of olfactory and gustatory dysfunction is not known in the CKD population. METHODS: We conducted a cross-sectional study among 3527 US adults aged ≥40 years old in the National Health and Nutrition Examination Survey (NHANES) between 2013 and 2014. We measured the prevalence of olfactory and gustatory dysfunction among patients with CKD defined as eGFR < 60 ml/min/1.73m2 using the "scratch and sniff" NHANES Pocket Smell Test and quinine whole-mouth test. We also examined the association between CKD and olfactory/gustatory dysfunction, and nutritional markers. RESULTS: The prevalence of olfactory dysfunction was 30% among CKD and 15% among non-CKD (p < 0.001). The prevalence of gustatory dysfunction was 13% among CKD and 17% among non-CKD (p = 0.10). After adjusting for confounders, CKD was significantly associated with olfactory dysfunction (OR = 1.47, 95% CI [1.07, 2.01]; p = 0.02) but not gustatory dysfunction (OR = 1.76, 95%CI [0.99, 3.11]; p = 0.05). Among the CKD population, the odds of olfactory dysfunction was 72% higher for every 10 kg decrease in grip strength (OR = 1.72, 95% CI [1.39, 2.13]; adjusted p = 0.005). CONCLUSION: CKD was associated with higher odds of olfactory but not gustatory dysfunction. Olfactory dysfunction was associated with lower grip strength among those with CKD. Screening and early intervening on olfactory dysfunction among CKD may preserve muscle strength and improve nutritional status in this vulnerable population.


Asunto(s)
Trastornos del Olfato/epidemiología , Trastornos del Olfato/etiología , Insuficiencia Renal Crónica/complicaciones , Trastornos del Gusto/epidemiología , Trastornos del Gusto/etiología , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Prevalencia
3.
J Am Soc Nephrol ; 31(9): 2097-2115, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32641397

RESUMEN

BACKGROUND: Gentamicin is a potent aminoglycoside antibiotic that targets gram-negative bacteria, but nephrotoxicity limits its clinical application. The cause of gentamicin-induced AKI has been attributed mainly to apoptosis of the proximal tubule cells. However, blocking apoptosis only partially attenuates gentamicin-induced AKI in animals. METHODS: Mice treated with gentamicin for 7 days developed AKI, and programmed cell death pathways were examined using pharmacologic inhibitors and in RIPK3-deficient mice. Effects in porcine and murine kidney cell lines were also examined. RESULTS: Gentamicin caused a low level of apoptosis in the proximal tubules and significant ultrastructural alterations consistent with necroptosis, occurring predominantly in the collecting ducts (CDs), including cell and organelle swelling and rupture of the cell membrane. Upregulation of the key necroptotic signaling molecules, mixed lineage kinase domain-like pseudokinase (MLKL) and receptor-interacting serine/threonine-protein kinase 3 (RIPK3), was detected in gentamicin-treated mice and in cultured renal tubule cells. In addition, gentamicin induced apical accumulation of total and phosphorylated MLKL (pMLKL) in CDs in mouse kidney. Inhibiting a necroptotic protein, RIPK1, with necrostatin-1 (Nec-1), attenuated gentamicin-induced necrosis and upregulation of MLKL and RIPK3 in mice and cultured cells. Nec-1 also alleviated kidney inflammation and fibrosis, and significantly improved gentamicin-induced renal dysfunction in mice. Furthermore, deletion of RIPK3 in the Ripk3-/- mice significantly attenuated gentamicin-induced AKI. CONCLUSIONS: A previously unrecognized role of programmed necrosis in collecting ducts in gentamicin-induced kidney injury presents a potential new therapeutic strategy to alleviate gentamicin-induced AKI through inhibiting necroptosis.


Asunto(s)
Lesión Renal Aguda/inducido químicamente , Gentamicinas/toxicidad , Túbulos Renales Colectores/efectos de los fármacos , Necroptosis/efectos de los fármacos , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Imidazoles/farmacología , Indoles/farmacología , Túbulos Renales Colectores/patología , Túbulos Renales Colectores/ultraestructura , Ratones , Ratones Endogámicos C57BL , Proteínas Quinasas/fisiología , Proteína Serina-Treonina Quinasas de Interacción con Receptores/fisiología
4.
J Am Soc Nephrol ; 30(11): 2073-2090, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31653783

RESUMEN

BACKGROUND: Necroptosis is a newly discovered cell death pathway that plays a critical role in AKI. The involvement of integrin-linked kinase (ILK) in necroptosis has not been studied. METHODS: We performed experiments in mice with an Ilk deletion in collecting duct (CD) principal cells (PCs), and cultured tubular epithelial cells treated with an ILK inhibitor or ILK siRNA knockdown. RESULTS: Ilk deletion in CD PCs resulted in acute tubular injury and early mortality in mice. Progressive interstitial fibrosis and inflammation associated with the activation of the canonical TGF-ß signaling cascade were detected in the kidneys of the mice lacking ILK in the CD PCs. In contrast to the minimal apoptosis detected in the animals' injured CDs, widespread necroptosis was present in ILK-deficient PCs, characterized by cell swelling, deformed mitochondria, and rupture of plasma membrane. In addition, ILK deficiency resulted in increased expression and activation of necroptotic proteins MLKL and RIPK3, and membrane translocation of MLKL in CD PCs. ILK inhibition and siRNA knockdown reduced cell survival in cultured tubular cells, concomitant with increased membrane accumulation of MLKL and/or phospho-MLKL. Administration of a necroptosis inhibitor, necrostatin-1, blocked cell death in vitro and significantly attenuated inflammation, interstitial fibrosis, and renal failure in ILK-deficient mice. CONCLUSIONS: The study demonstrates the critical involvement of ILK in necroptosis through modulation of the RIPK3 and MLKL pathway and highlights the contribution of CD PC injury to the development of inflammation and interstitial fibrosis of the kidney.


Asunto(s)
Túbulos Renales Colectores/patología , Riñón/patología , Necroptosis , Nefritis/etiología , Proteínas Serina-Treonina Quinasas/fisiología , Animales , Células Cultivadas , Fibrosis , Ratones , Ratones Endogámicos C57BL , Proteínas Quinasas/fisiología , Proteínas Serina-Treonina Quinasas/deficiencia , Proteína Serina-Treonina Quinasas de Interacción con Receptores/fisiología , Proteínas Smad/fisiología , Factor de Crecimiento Transformador beta/fisiología
5.
PLoS One ; 14(8): e0219940, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31386675

RESUMEN

Men tend to dehydrate more than women after prolonged exercise, possibly due to lower water intake and higher perspiration rate. Women are prone to exercise-associated hyponatremia, primarily attributed to the higher water consumption causing hypervolemia. Since aquaporin-2 (AQP2) water channels in the kidney collecting duct (CD) principal cells (PCs) are involved in maintaining water balance, we investigated their role in sex-dependent water homeostasis in wild-type (WT) C57BL/6 mice. Because CD intercalated cells (ICs) may also be involved in water balance, we also assessed the urine concentrating ability of V-ATPase B1 subunit-deficient (Atp6v1b1-/-) mice. Upon 12-hour water deprivation, urine osmolality increased by 59% in WT female mice and by only 28% in males. This difference was abolished in Atp6v1b1-/- mice, in which dehydration induced a ~30% increase in urine osmolarity in both sexes. AQP2 levels were highest in WT females; female Atp6v1b1-/- mice had substantially lower AQP2 expression than WT females, comparable to the low AQP2 levels seen in both Atp6v1b1-/- and WT males. After dehydration, AQP2 relocates towards the PC apical pole, especially in the inner stripe and inner medulla, and to a greater extent in WT females than in WT males. This apparent sex-dependent concentrating advantage was absent in Atp6v1b1-/- females, whose reduced AQP2 apical relocation was similar to WT males. Accordingly, female mice concentrate urine better than males upon dehydration due to increased AQP2 expression and mobilization. Moreover, our data support the involvement of ICs in water homeostasis, at least partly mediated by V-ATPase, in a sex-dependent manner.


Asunto(s)
Eliminación de Gen , Homeostasis , Caracteres Sexuales , ATPasas de Translocación de Protón Vacuolares/deficiencia , ATPasas de Translocación de Protón Vacuolares/genética , Agua/metabolismo , Animales , Acuaporina 2/metabolismo , Femenino , Regulación de la Expresión Génica/genética , Espacio Intracelular/metabolismo , Túbulos Renales Colectores/citología , Masculino , Ratones , Transporte de Proteínas/genética
6.
Am J Physiol Renal Physiol ; 315(1): F173-F185, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29384414

RESUMEN

We recently reported that nuclear receptor coactivator 7 (Ncoa7) is a vacuolar proton pumping ATPase (V-ATPase) interacting protein whose function has not been defined. Ncoa7 is highly expressed in the kidney and partially colocalizes with the V-ATPase in collecting duct intercalated cells (ICs). Here, we hypothesized that targeted deletion of the Ncoa7 gene could affect V-ATPase activity in ICs in vivo. We tested this by analyzing the acid-base status, major electrolytes, and kidney morphology of Ncoa7 knockout (KO) mice. We found that Ncoa7 KO mice, similar to Atp6v1b1 KOs, did not develop severe distal renal tubular acidosis (dRTA), but they exhibited a persistently high urine pH and developed hypobicarbonatemia after acid loading with ammonium chloride. Conversely, they did not develop significant hyperbicarbonatemia and alkalemia after alkali loading with sodium bicarbonate. We also found that ICs were larger and with more developed apical microvilli in Ncoa7 KO compared with wild-type mice, a phenotype previously associated with metabolic acidosis. At the molecular level, the abundance of several V-ATPase subunits, carbonic anhydrase 2, and the anion exchanger 1 was significantly reduced in medullary ICs of Ncoa7 KO mice, suggesting that Ncoa7 is important for maintaining high levels of these proteins in the kidney. We conclude that Ncoa7 is involved in IC function and urine acidification in mice in vivo, likely through modulating the abundance of V-ATPase and other key acid-base regulators in the renal medulla. Consequently, mutations in the NCOA7 gene may also be involved in dRTA pathogenesis in humans.


Asunto(s)
Equilibrio Ácido-Base , Acidosis Tubular Renal/genética , Eliminación de Gen , Túbulos Renales/metabolismo , Coactivadores de Receptor Nuclear/genética , Acidosis Tubular Renal/patología , Acidosis Tubular Renal/fisiopatología , Acidosis Tubular Renal/orina , Animales , Proteína 1 de Intercambio de Anión de Eritrocito/genética , Proteína 1 de Intercambio de Anión de Eritrocito/metabolismo , Anhidrasa Carbónica II/genética , Anhidrasa Carbónica II/metabolismo , Predisposición Genética a la Enfermedad , Concentración de Iones de Hidrógeno , Túbulos Renales/patología , Túbulos Renales/fisiopatología , Ratones Endogámicos C57BL , Ratones Noqueados , Coactivadores de Receptor Nuclear/deficiencia , Fenotipo , Orina/química , ATPasas de Translocación de Protón Vacuolares/genética , ATPasas de Translocación de Protón Vacuolares/metabolismo
8.
Am J Physiol Renal Physiol ; 314(2): F306-F316, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29046300

RESUMEN

Aquaporin-2 (AQP2) is a water channel protein expressed in principal cells (PCs) of the kidney collecting ducts (CDs) and plays a critical role in mediating water reabsorption and urine concentration. AQP2 undergoes both regulated trafficking mediated by vasopressin (VP) and constitutive recycling, which is independent of VP. For both pathways, actin cytoskeletal dynamics is a key determinant of AQP2 trafficking. We report here that manganese chloride (MnCl2) is a novel and potent regulator of AQP2 trafficking in cultured cells and in the kidney. MnCl2 treatment promoted internalization and intracellular accumulation of AQP2. The effect of MnCl2 on the intracellular accumulation of AQP2 was associated with activation of RhoA and actin polymerization without modification of AQP2 phosphorylation. Although the level of total and phosphorylated AQP2 did not change, MnCl2 treatment impeded VP-induced phosphorylation of AQP2 at its serine-256, -264, and -269 residues and dephosphorylation at serine 261. In addition, MnCl2 significantly promoted F-actin polymerization along with downregulation of RhoA activity and prevented VP-induced membrane accumulation of AQP2. Finally, MnCl2 treatment in mice resulted in significant polyuria and reduced urinary concentration, likely due to intracellular relocation of AQP2 in the PCs of kidney CDs. More importantly, the reduced urinary concentration caused by MnCl2 treatment in animals was not corrected by VP. In summary, our study identified a novel effect of MnCl2 on AQP2 trafficking through modifying RhoA activity and actin polymerization and uncovered its potent impact on water diuresis in vivo.


Asunto(s)
Citoesqueleto de Actina/efectos de los fármacos , Actinas/metabolismo , Acuaporina 2/metabolismo , Cloruros/toxicidad , Capacidad de Concentración Renal/efectos de los fármacos , Túbulos Renales Colectores/efectos de los fármacos , Poliuria/inducido químicamente , Citoesqueleto de Actina/metabolismo , Animales , Túbulos Renales Colectores/metabolismo , Túbulos Renales Colectores/fisiopatología , Células LLC-PK1 , Masculino , Compuestos de Manganeso , Ratones Endogámicos C57BL , Fosforilación , Polimerizacion , Poliuria/metabolismo , Poliuria/fisiopatología , Transporte de Proteínas , Transducción de Señal/efectos de los fármacos , Porcinos , Vasopresinas/farmacología , Proteínas de Unión al GTP rho/metabolismo , Proteína de Unión al GTP rhoA
9.
FASEB J ; 32(4): 2046-2059, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29196502

RESUMEN

The investigation of orphan GPCRs (GPRs) has the potential to uncover novel insights into whole animal physiology. In this study, our goal was to determine the renal localization of Gprc5c, a receptor that we previously reported to be highly expressed in murine whole kidney, and to examine physiologic parameters in Gprc5c knockout (KO) mice to gain insight into function. Gprc5c localized to the apical membrane of renal proximal tubules (PTs) in mice, rats, and humans. With the comparison of Gprc5c wild-type (WT) and KO mice, we found that Gprc5c KO mice have altered acid-base homeostasis. Specifically, Gprc5c KO mice have lower blood pH and higher urine pH compared with WT mice, with a reduced level of titratable acids in their urine. In an in vitro GPCR internalization assay, we observed that Gprc5c internalization (an index of activation) was triggered by alkaline extracellular pH. Furthermore, with the use of an in vitro BCECF assay, we observed that Gprc5c increases Na+/H+ exchanger 3 (NHE3) activity at alkaline pH. We also find that the NHE3 activity is reduced in Gprc5c KO mice by 2 photon imaging in seminaphthorhodafluors (SNARF)-4F-loaded kidney sections. NHE3 is a primary contributor to apical transport of H+ in the renal PT. Together, these data imply that Gprc5c modulates the renal contribution to systemic pH homeostasis, at least in part, by taking part in the regulation of NHE3.-Rajkumar, P., Cha, B., Yin, J., Arend, L. J., Paunescu, T. G., Hirabayashi, Y., Donowitz, M., Pluznick, J. L. Identifying the localization and exploring a functional role for Gprc5c in the kidney.


Asunto(s)
Túbulos Renales Proximales/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Ácidos/sangre , Ácidos/orina , Álcalis/sangre , Álcalis/orina , Animales , Células HEK293 , Humanos , Túbulos Renales Proximales/fisiología , Ratones , Ratones Endogámicos C57BL , Transporte de Proteínas , Receptores Acoplados a Proteínas G/genética , Intercambiador 3 de Sodio-Hidrógeno/metabolismo , Equilibrio Hidroelectrolítico
10.
Proc Natl Acad Sci U S A ; 114(46): E9989-E9998, 2017 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-29089413

RESUMEN

Prior RNA sequencing (RNA-seq) studies have identified complete transcriptomes for most renal epithelial cell types. The exceptions are the cell types that make up the renal collecting duct, namely intercalated cells (ICs) and principal cells (PCs), which account for only a small fraction of the kidney mass, but play critical physiological roles in the regulation of blood pressure, extracellular fluid volume, and extracellular fluid composition. To enrich these cell types, we used FACS that employed well-established lectin cell surface markers for PCs and type B ICs, as well as a newly identified cell surface marker for type A ICs, c-Kit. Single-cell RNA-seq using the IC- and PC-enriched populations as input enabled identification of complete transcriptomes of A-ICs, B-ICs, and PCs. The data were used to create a freely accessible online gene-expression database for collecting duct cells. This database allowed identification of genes that are selectively expressed in each cell type, including cell-surface receptors, transcription factors, transporters, and secreted proteins. The analysis also identified a small fraction of hybrid cells expressing aquaporin-2 and anion exchanger 1 or pendrin transcripts. In many cases, mRNAs for receptors and their ligands were identified in different cells (e.g., Notch2 chiefly in PCs vs. Jag1 chiefly in ICs), suggesting signaling cross-talk among the three cell types. The identified patterns of gene expression among the three types of collecting duct cells provide a foundation for understanding physiological regulation and pathophysiology in the renal collecting duct.


Asunto(s)
Acuaporina 2/metabolismo , Células Epiteliales/metabolismo , Túbulos Renales Colectores/metabolismo , Riñón/metabolismo , Análisis de Secuencia de ARN/métodos , Transcriptoma , Animales , Proteína 1 de Intercambio de Anión de Eritrocito/metabolismo , Proteínas de Transporte de Anión/metabolismo , Secuencia de Bases , Biomarcadores/metabolismo , Expresión Génica , Perfilación de la Expresión Génica , Proteína Jagged-1/metabolismo , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , ARN/metabolismo , Receptor Notch2/metabolismo , Transducción de Señal , Transportadores de Sulfato , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcriptoma/genética
11.
Sci Rep ; 7(1): 11696, 2017 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-28916834

RESUMEN

The glomerulus exercises its filtration barrier function by establishing a complex filtration apparatus consisting of podocyte foot processes, glomerular basement membrane and endothelial cells. Disruption of any component of the glomerular filtration barrier leads to glomerular dysfunction, frequently manifested as proteinuria. Ultrastructural studies of the glomerulus by transmission electron microscopy (TEM) and conventional scanning electron microscopy (SEM) have been routinely used to identify and classify various glomerular diseases. Here we report the application of newly developed helium ion scanning microscopy (HIM) to examine the glomerulopathy in a Col4a3 mutant/Alport syndrome mouse model. Our study revealed unprecedented details of glomerular abnormalities in Col4a3 mutants including distorted podocyte cell bodies and disorganized primary processes. Strikingly, we observed abundant filamentous microprojections arising from podocyte cell bodies and processes, and presence of unique bridging processes that connect the primary processes and foot processes in Alport mice. Furthermore, we detected an altered glomerular endothelium with disrupted sub-endothelial integrity. More importantly, we were able to clearly visualize the complex, three-dimensional podocyte and endothelial interface by HIM. Our study demonstrates that HIM provides nanometer resolution to uncover and rediscover critical ultrastructural characteristics of the glomerulopathy in Col4a3 mutant mice.


Asunto(s)
Autoantígenos/genética , Colágeno Tipo IV/genética , Glomerulonefritis/patología , Glomérulos Renales/ultraestructura , Animales , Colágeno Tipo IV/deficiencia , Células Endoteliales/patología , Glomérulos Renales/patología , Láseres de Gas , Ratones , Ratones Mutantes/genética , Microscopía Confocal , Podocitos/patología , Podocitos/ultraestructura
12.
J Am Soc Nephrol ; 28(11): 3395-3403, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28775001

RESUMEN

Patients with CKD suffer from food aversion, anorexia, and malnutrition. Although olfaction has a significant role in determining food flavor, our understanding of olfactory impairment and of the olfaction-nutrition axis in patients with kidney disease is limited. We quantified odor identification, odor threshold, and subjective odor perception in a cohort (n=161) comprising 36 participants with CKD, 100 participants with ESRD, and 25 controls. We investigated olfaction-nutrition associations in these participants and examined a novel intervention to improve olfaction in ESRD. The mean odor identification score was lower in patients with CKD (75.6%±13.1%; P=0.02) and ESRD (66.8%±15.1%; P<0.001) than in controls (83.6%±11.4%). Patients with ESRD exhibited higher odor threshold than the remaining participants exhibited. All groups had similar scores for subjective smell assessment. In multivariable adjusted analyses, kidney disease associated with increased odds of odor identification deficits (odds ratio, 4.80; 95% confidence interval, 1.94 to 11.89). A reduction in odor identification score was associated with higher subjective global assessment score and lower serum total cholesterol, LDL cholesterol, and albumin concentrations. We found no associations between odor threshold and nutritional parameters. In a proof of concept, 6-week, open-label clinical trial, intranasal theophylline (an epithelial membrane transport and proton secretion activator) increased odor identification score in five out of seven (71%) patients with ESRD. In conclusion, patients with kidney disease have olfactory deficits that may influence their nutritional status. Our preliminary results regarding olfactory improvement using intranasal theophylline warrant confirmation in a randomized controlled trial.


Asunto(s)
Trastornos del Olfato/etiología , Insuficiencia Renal Crónica/complicaciones , Femenino , Humanos , Fallo Renal Crónico/complicaciones , Masculino , Persona de Mediana Edad , Trastornos del Olfato/tratamiento farmacológico , Trastornos del Olfato/fisiopatología , Inhibidores de Fosfodiesterasa/uso terapéutico , Teofilina/uso terapéutico
13.
Sci Rep ; 7(1): 8321, 2017 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-28814739

RESUMEN

Helium ion scanning microscopy (HIM) is a novel technology that directly visualizes the cell surface ultrastructure without surface coating. Despite its very high resolution, it has not been applied extensively to study biological or pathology samples. Here we report the application of this powerful technology to examine the three-dimensional ultrastructural characteristics of proteinuric glomerulopathy in mice with CD2-associated protein (CD2AP) deficiency. HIM revealed the serial alteration of glomerular features including effacement and disorganization of the slit diaphragm, followed by foot process disappearance, flattening and fusion of major processes, and eventual transformation into a podocyte sheet as the disease progressed. The number and size of the filtration slit pores decreased. Strikingly, numerous "bleb" shaped microprojections were observed extending from podocyte processes and cell body, indicating significant membrane dynamics accompanying CD2AP deficiency. Visualizing the glomerular endothelium and podocyte-endothelium interface revealed the presence of endothelial damage, and disrupted podocyte and endothelial integrity in 6 week-old Cd2ap-KO mice. We used the HIM technology to investigate at nanometer scale resolution the ultrastructural alterations of the glomerular filtration apparatus in mice lacking the critical slit diaphragm-associated protein CD2AP, highlighting the great potential of HIM to provide new insights into the biology and (patho)physiology of glomerular diseases.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/deficiencia , Proteínas del Citoesqueleto/deficiencia , Enfermedades Renales/genética , Enfermedades Renales/patología , Glomérulos Renales/metabolismo , Glomérulos Renales/patología , Animales , Modelos Animales de Enfermedad , Endotelio/metabolismo , Endotelio/patología , Helio , Enfermedades Renales/metabolismo , Glomérulos Renales/ultraestructura , Ratones , Ratones Noqueados , Microscopía Confocal , Podocitos/metabolismo , Podocitos/ultraestructura
14.
J Cell Sci ; 130(17): 2914-2925, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28754689

RESUMEN

The water channel aquaporin-2 (AQP2) is a major regulator of water homeostasis in response to vasopressin (VP). Dynamic trafficking of AQP2 relies on its close interaction with trafficking machinery proteins and the actin cytoskeleton. Here, we report the identification of ezrin, an actin-binding protein from the ezrin/radixin/moesin (ERM) family as an AQP2-interacting protein. Ezrin was first detected in a co-immunoprecipitation (co-IP) complex using an anti-AQP2 antibody in a proteomic analysis. Immunofluorescence staining revealed the co-expression of ezrin and AQP2 in collecting duct principal cells, and VP treatment caused redistribution of both proteins to the apical membrane. The ezrin-AQP2 interaction was confirmed by co-IP experiments with an anti-ezrin antibody, and by pulldown assays using purified full-length and FERM domain-containing recombinant ezrin. By using purified recombinant proteins, we showed that ezrin directly interacts with AQP2 C-terminus through its N-terminal FERM domain. Knocking down ezrin expression with shRNA resulted in increased membrane accumulation of AQP2 and reduced AQP2 endocytosis. Therefore, through direct interaction with AQP2, ezrin facilitates AQP2 endocytosis, thus linking the dynamic actin cytoskeleton network with AQP2 trafficking.


Asunto(s)
Acuaporina 2/metabolismo , Proteínas del Citoesqueleto/metabolismo , Endocitosis , Animales , Membrana Celular/metabolismo , Clatrina/metabolismo , AMP Cíclico/metabolismo , Proteínas del Citoesqueleto/química , Perros , Regulación hacia Abajo , Exocitosis , Técnicas de Silenciamiento del Gen , Humanos , Inmunoprecipitación , Células LLC-PK1 , Células de Riñón Canino Madin Darby , Fosforilación , Unión Proteica , Dominios Proteicos , Ratas , Porcinos , Vasopresinas
15.
Am J Physiol Renal Physiol ; 313(4): F1026-F1037, 2017 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-28701310

RESUMEN

The renal collecting duct (CD) contains two major cell types, intercalated (ICs) and principal cells (PCs). A previous report showed that deletion of ß1-integrin in the entire renal CD causes defective CD morphogenesis resulting in kidney dysfunction. However, subsequent deletion of ß1-integrin specifically in ICs and PCs, respectively, did not cause any morphological defects in the CDs. The discrepancy between these studies prompts us to reinvestigate the role of ß1-integrin in CD cells, specifically in the PCs. We conditionally deleted ß1-integrin in mouse CD PCs using a specific aquaporin-2 (AQP2) promoter Cre-LoxP system. The resulting mutant mice, ß-1f/fAQP2-Cre+, had lower body weight, failed to thrive, and died around 8-12 wk. Their CD tubules were dilated, and some of them contained cellular debris. Increased apoptosis and proliferation of PCs were observed in the dilated CDs. Trichrome staining and electron microscopy revealed the presence of peritubular and interstitial fibrosis that is associated with increased production of extracellular matrix proteins including collagen type IV and fibronectin, as detected by immunoblotting. Further analysis revealed a significantly increased expression of transforming growth factor-ß (TGF-ß)-induced protein, fibronectin, and TGF-ß receptor-1 mRNAs and concomitantly increased phosphorylation of SMAD-2 that indicates the activation of the TGF-ß signaling pathway. Therefore, our data reveal that normal expression of ß1-integrin in PCs is a critical determinant of CD structural and functional integrity and further support the previously reported critical role of ß1-integrin in the development and/or maintenance of the CD structure and function.


Asunto(s)
Matriz Extracelular/metabolismo , Eliminación de Gen , Integrina beta1/metabolismo , Médula Renal/metabolismo , Túbulos Renales Colectores/metabolismo , Poliuria/metabolismo , Insuficiencia Renal/metabolismo , Factores de Edad , Animales , Apoptosis , Acuaporina 2/genética , Proliferación Celular , Matriz Extracelular/ultraestructura , Insuficiencia de Crecimiento/genética , Insuficiencia de Crecimiento/metabolismo , Insuficiencia de Crecimiento/patología , Fibrosis , Predisposición Genética a la Enfermedad , Integrasas/genética , Integrina beta1/genética , Médula Renal/ultraestructura , Túbulos Renales Colectores/ultraestructura , Ratones Noqueados , Fenotipo , Fosforilación , Poliuria/genética , Poliuria/patología , Regiones Promotoras Genéticas , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Receptor Tipo I de Factor de Crecimiento Transformador beta , Receptores de Factores de Crecimiento Transformadores beta/genética , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Insuficiencia Renal/genética , Insuficiencia Renal/patología , Transducción de Señal , Proteína Smad2/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
16.
Physiol Rep ; 5(1)2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28053225

RESUMEN

The cerebrospinal fluid (CSF) pH influences brain interstitial pH and, therefore, brain function. We hypothesized that the choroid plexus epithelium (CPE) expresses the vacuolar H+-ATPase (V-ATPase) as an acid extrusion mechanism in the luminal membrane to counteract detrimental elevations in CSF pH. The expression of mRNA corresponding to several V-ATPase subunits was demonstrated by RT-PCR analysis of CPE cells (CPECs) isolated by fluorescence-activated cell sorting. Immunofluorescence and electron microscopy localized the V-ATPase primarily in intracellular vesicles with only a minor fraction in the luminal microvillus area. The vesicles did not translocate to the luminal membrane in two in vivo models of hypocapnia-induced alkalosis. The Na+-independent intracellular pH (pHi) recovery from acidification was studied in freshly isolated clusters of CPECs. At extracellular pH (pHo) 7.4, the cells failed to display significant concanamycin A-sensitive pHi recovery (i.e., V-ATPase activity). The recovery rate in the absence of Na+ amounted to <10% of the pHi recovery rate observed in the presence of Na+ Recovery of pHi was faster at pHo 7.8 and was abolished at pHo 7.0. The concanamycin A-sensitive pHi recovery was stimulated by cAMP at pH 7.4 in vitro, but intraventricular infusion of the membrane-permeant cAMP analog 8-CPT-cAMP did not result in trafficking of the V-ATPase. In conclusion, we find evidence for the expression of a minor fraction of V-ATPase in the luminal membrane of CPECs. This fraction does not contribute to enhanced acid extrusion at high extracellular pH, but seems to be activated by cAMP in a trafficking-independent manner.


Asunto(s)
Membrana Celular/química , Plexo Coroideo/metabolismo , Concentración de Iones de Hidrógeno/efectos de los fármacos , Líquido Intracelular/química , ATPasas de Translocación de Protón Vacuolares/metabolismo , 8-Bromo Monofosfato de Adenosina Cíclica/administración & dosificación , 8-Bromo Monofosfato de Adenosina Cíclica/análogos & derivados , 8-Bromo Monofosfato de Adenosina Cíclica/metabolismo , Animales , Encéfalo/fisiología , Membrana Celular/metabolismo , Líquido Cefalorraquídeo/química , Líquido Cefalorraquídeo/enzimología , Líquido Cefalorraquídeo/fisiología , Plexo Coroideo/química , Plexo Coroideo/citología , Plexo Coroideo/ultraestructura , AMP Cíclico/análogos & derivados , AMP Cíclico/metabolismo , Inhibidores Enzimáticos/administración & dosificación , Inhibidores Enzimáticos/efectos adversos , Citometría de Flujo , Líquido Intracelular/enzimología , Líquido Intracelular/metabolismo , Macrólidos/administración & dosificación , Macrólidos/efectos adversos , Masculino , Ratones , Ratones Endogámicos C57BL , ARN Mensajero/metabolismo , Sodio/metabolismo , Tionucleótidos/metabolismo
17.
J Am Soc Nephrol ; 28(5): 1507-1520, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-27932475

RESUMEN

Distal nephron acid secretion is mediated by highly specialized type A intercalated cells (A-ICs), which contain vacuolar H+-ATPase (V-type ATPase)-rich vesicles that fuse with the apical plasma membrane on demand. Intracellular bicarbonate generated by luminal H+ secretion is removed by the basolateral anion-exchanger AE1. Chronically reduced renal acid excretion in distal renal tubular acidosis (dRTA) may lead to nephrocalcinosis and renal failure. Studies in MDCK monolayers led to the proposal of a dominant-negative trafficking mechanism to explain AE1-associated dominant dRTA. To test this hypothesis in vivo, we generated an Ae1 R607H knockin mouse, which corresponds to the most common dominant dRTA mutation in human AE1, R589H. Compared with wild-type mice, heterozygous and homozygous R607H knockin mice displayed incomplete dRTA characterized by compensatory upregulation of the Na+/HCO3- cotransporter NBCn1. Red blood cell Ae1-mediated anion-exchange activity and surface polypeptide expression did not change. Mutant mice expressed far less Ae1 in A-ICs, but basolateral targeting of the mutant protein was preserved. Notably, mutant mice also exhibited reduced expression of V-type ATPase and compromised targeting of this proton pump to the plasma membrane upon acid challenge. Accumulation of p62- and ubiquitin-positive material in A-ICs of knockin mice suggested a defect in the degradative pathway, which may explain the observed loss of A-ICs. R607H knockin did not affect type B intercalated cells. We propose that reduced basolateral anion-exchange activity in A-ICs inhibits trafficking and regulation of V-type ATPase, compromising luminal H+ secretion and possibly lysosomal acidification.


Asunto(s)
Acidosis Tubular Renal/enzimología , Proteína 1 de Intercambio de Anión de Eritrocito/fisiología , Túbulos Renales Colectores/citología , Túbulos Renales Colectores/enzimología , ATPasas de Translocación de Protón Vacuolares/fisiología , Animales , Proteína 1 de Intercambio de Anión de Eritrocito/genética , Masculino , Ratones , Modelos Biológicos
18.
J Am Soc Nephrol ; 27(11): 3320-3330, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27044666

RESUMEN

ATPase H+-transporting lysosomal accessory protein 2 (Atp6ap2), also known as the (pro)renin receptor, is a type 1 transmembrane protein and an accessory subunit of the vacuolar H+-ATPase (V-ATPase) that may also function within the renin-angiotensin system. However, the contribution of Atp6ap2 to renin-angiotensin-dependent functions remains unconfirmed. Using mice with an inducible conditional deletion of Atp6ap2 in mouse renal epithelial cells, we found that decreased V-ATPase expression and activity in the intercalated cells of the collecting duct impaired acid-base regulation by the kidney. In addition, these mice suffered from marked polyuria resistant to desmopressin administration. Immunoblotting revealed downregulation of the medullary Na+-K+-2Cl- cotransporter NKCC2 in these mice compared with wild-type mice, an effect accompanied by a hypotonic medullary interstitium and impaired countercurrent multiplication. This phenotype correlated with strong autophagic defects in epithelial cells of medullary tubules. Notably, cells with high accumulation of the autophagosomal substrate p62 displayed the strongest reduction of NKCC2 expression. Finally, nephron-specific Atp6ap2 depletion did not affect angiotensin II production, angiotensin II-dependent BP regulation, or sodium handling in the kidney. Taken together, our results show that nephron-specific deletion of Atp6ap2 does not affect the renin-angiotensin system but causes a combination of renal concentration defects and distal renal tubular acidosis as a result of impaired V-ATPase activity.


Asunto(s)
Riñón/enzimología , ATPasas de Translocación de Protón/fisiología , Receptores de Superficie Celular/fisiología , Sistema Renina-Angiotensina/fisiología , ATPasas de Translocación de Protón Vacuolares/fisiología , Animales , Femenino , Masculino , Ratones
19.
Sci Rep ; 5: 14827, 2015 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-26442671

RESUMEN

V-ATPases (H(+) ATPases) are multisubunit, ATP-dependent proton pumps that regulate pH homeostasis in virtually all eukaryotes. They are involved in key cell biological processes including vesicle trafficking, endosomal pH sensing, membrane fusion and intracellular signaling. They also have critical systemic roles in renal acid excretion and blood pH balance, male fertility, bone remodeling, synaptic transmission, olfaction and hearing. Furthermore, V-ATPase dysfunction either results in or aggravates various other diseases, but little is known about the complex protein interactions that regulate these varied V-ATPase functions. Therefore, we performed a proteomic analysis to identify V-ATPase associated proteins and construct a V-ATPase interactome. Our analysis using kidney tissue revealed V-ATPase-associated protein clusters involved in protein quality control, complex assembly and intracellular trafficking. ARHGEF7, DMXL1, EZR, NCOA7, OXR1, RPS6KA3, SNX27 and 9 subunits of the chaperonin containing TCP1 complex (CCT) were found to interact with V-ATPase for the first time in this study. Knockdown of two interacting proteins, DMXL1 and WDR7, inhibited V-ATPase-mediated intracellular vesicle acidification in a kidney cell line, providing validation for the utility of our interactome as a screen for functionally important novel V-ATPase-regulating proteins. Our data, therefore, provide new insights and directions for the analysis of V-ATPase cell biology and (patho)physiology.


Asunto(s)
Mapas de Interacción de Proteínas , ATPasas de Translocación de Protón Vacuolares/metabolismo , Animales , Inmunoprecipitación , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Fosforilación , Pliegue de Proteína , Mapeo de Interacción de Proteínas/métodos , Transporte de Proteínas , ATPasas de Translocación de Protón Vacuolares/genética
20.
PLoS One ; 10(7): e0131719, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26147297

RESUMEN

In renal collecting duct (CD) principal cells (PCs), vasopressin (VP) acts through its receptor, V2R, to increase intracellular cAMP leading to phosphorylation and apical membrane accumulation of the water channel aquaporin 2 (AQP2). The trafficking and function of basolaterally located AQP2 is, however, poorly understood. Here we report the successful application of a 3-dimensional Madin-Darby canine kidney (MDCK) epithelial model to study polarized AQP2 trafficking. This model recapitulates the luminal architecture of the CD and bi-polarized distribution of AQP2 as seen in kidney. Without stimulation, AQP2 is located in the subapical and basolateral regions. Treatment with VP, forskolin (FK), or 8-(4-Chlorophenylthio)-2'-O-methyladenosine 3',5'-cyclic monophosphate monosodium hydrate (CPT-cAMP) leads to translocation of cytosolic AQP2 to the apical membrane, but not to the basolateral membrane. Treating cells with methyl-ß-cyclodextrin (mßCD) to acutely block endocytosis causes accumulation of AQP2 on the basolateral membrane, but not on the apical membrane. Our data suggest that AQP2 may traffic differently at the apical and basolateral domains in this 3D epithelial model. In addition, application of a panel of phosphorylation specific AQP2 antibodies reveals the polarized, subcellular localization of differentially phosphorylated AQP2 at S256, S261, S264 and S269 in the 3D culture model, which is consistent with observations made in the CDs of VP treated animals, suggesting the preservation of phosphorylation dependent regulatory mechanism of AQP2 trafficking in this model. Therefore we have established a 3D culture model for the study of trafficking and regulation of both the apical and basolaterally targeted AQP2. The new model will enable further characterization of the complex mechanism regulating bi-polarized trafficking of AQP2 in vitro.


Asunto(s)
Acuaporina 2/metabolismo , Animales , Células Cultivadas , Perros , Células Epiteliales/metabolismo , Células de Riñón Canino Madin Darby , Fosforilación , Transporte de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...