Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mol Phylogenet Evol ; 159: 107120, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33610650

RESUMEN

The tribe Oryzomyini is an impressive group of rodents, comprising 30 extant genera and an estimated 147 species. Recent remarkable advances in the understanding of the diversity, taxonomy and systematics of the tribe have mostly derived from analyses of single or few genetic markers. However, the evolutionary history and biogeography of Oryzomyini, its origin and diversification across the Neotropics, remain unrevealed. Here we use a multi-locus dataset (over 400 loci) obtained through anchored phylogenomics to provide a genome-wide phylogenetic hypothesis for Oryzomyini and to investigate the tempo and mode of its evolution. Species tree and supermatrix analyses produced topologies with strong support for most branches, with all genera confirmed as monophyletic, a result that previous studies failed to obtain. Our analyses also corroborated the monophyly and phylogenetic relationship of three main clades of Oryzomyini (B, C and D). The origin of the tribe is estimated to be in the Miocene (8.93-5.38 million years ago). The cladogenetic events leading to the four main clades occurred during the late Miocene and early Pliocene and most speciation events in the Pleistocene. Geographic range estimates suggested an east of Andes origin for the ancestor of oryzomyines, most likely in the Boreal Brazilian region, which includes the north bank of Rio Amazonas and the Guiana Shield. Oryzomyini rodents are an autochthonous South America radiation, that colonized areas and dominions of this continent mainly by dispersal events. The evolutionary history of the tribe is deeply associated with the Andean cordillera and the landscape history of Amazon basin.


Asunto(s)
Especiación Genética , Filogenia , Sigmodontinae/clasificación , Distribución Animal , Animales , Teorema de Bayes , Brasil , Filogeografía
2.
Mol Phylogenet Evol ; 103: 184-198, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27421565

RESUMEN

A phylogenetic systematic perspective is instrumental in recovering new species and their evolutionary relationships. The advent of new technologies for molecular and morphological data acquisition and analysis, allied to the integration of knowledge from different areas, such as ecology and population genetics, allows for the emergence of more rigorous, accurate and complete scientific hypothesis on species diversity. Mustached bats (genus Pteronotus) are a good model for the application of this integrative approach. They are a widely distributed and a morphologically homogeneous group, but comprising species with remarkable differences in their echolocation strategy and feeding behavior. The latest systematic review suggested six species with 17 subspecies in Pteronotus. Subsequent studies using discrete morphological characters supported the same arrangement. However, recent papers reported high levels of genetic divergence among conspecific taxa followed by bioacoustic and geographic agreement, suggesting an underestimated diversity in the genus. To date, no study merging genetic evidences and morphometric variation along the entire geographic range of this group has been attempted. Based on a comprehensive sampling including representatives of all current taxonomic units, we attempt to delimit species in Pteronotus through the application of multiple methodologies and hierarchically distinct datasets. The molecular approach includes six molecular markers from three genetic transmission systems; morphological investigations used 41 euclidean distances estimated through three-dimensional landmarks collected from 1628 skulls. The phylogenetic analysis reveals a greater diversity than previously reported, with a high correspondence among the genetic lineages and the currently recognized subspecies in the genus. Discriminant analysis of variables describing size and shape of cranial bones support the rising of the genetic groups to the specific status. Based on multiples evidences, we present an updated taxonomic arrangement composed by 16 extant species and a new and more robust phylogenetic hypothesis for the species included in the genus Pteronotus. Studies developed under such integrative taxonomic approach are timely for a deeper and wider comprehension of Neotropical diversity, representing the first step for answering broader questions on evolutionary and ecological aspects of Neotropical life history.


Asunto(s)
Quirópteros/clasificación , Animales , Biodiversidad , Evolución Biológica , Quirópteros/genética , Citocromos b/clasificación , Citocromos b/genética , Citocromos b/metabolismo , ARN Helicasas DEAD-box/clasificación , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , ADN/química , ADN/aislamiento & purificación , ADN/metabolismo , Proteínas de Unión al ADN/clasificación , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Análisis Discriminante , Filogenia , Análisis de Componente Principal , Factor de Transcripción STAT5/clasificación , Factor de Transcripción STAT5/genética , Factor de Transcripción STAT5/metabolismo , Alineación de Secuencia , Análisis de Secuencia de ADN
3.
Parasit Vectors ; 8: 657, 2015 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-26701154

RESUMEN

BACKGROUND: Bat trypanosomes are implicated in the evolution of the T. cruzi clade, which harbours most African, European and American trypanosomes from bats and other trypanosomes from African, Australian and American terrestrial mammals, including T. cruzi and T. rangeli, the agents of the American human trypanosomiasis. The diversity of bat trypanosomes globally is still poorly understood, and the common ancestor, geographical origin, and evolution of species within the T. cruzi clade remain largely unresolved. METHODS: Trypanosome sequences were obtained from cultured parasites and from museum archived liver/blood samples of bats captured from Guatemala (Central America) to the Brazilian Atlantic Coast. Phylogenies were inferred using Small Subunit (SSU) rRNA, glycosomal glyceraldehyde phosphate dehydrogenase (gGAPDH), and Spliced Leader (SL) RNA genes. RESULTS: Here, we described Trypanosoma wauwau n. sp. from Pteronotus bats (Mormoopidae) placed in the T. cruzi clade, then supporting the bat-seeding hypothesis whereby the common ancestor of this clade likely was a bat trypanosome. T. wauwau was sister to the clade T. spp-Neobats from phyllostomid bats forming an assemblage of trypanosome species exclusively of Noctilionoidea Neotropical bats, which was sister to an Australian clade of trypanosomes from indigenous marsupials and rodents, which possibly evolved from a bat trypanosome. T. wauwau was found in 26.5% of the Pteronotus bats examined, and phylogeographical analysis evidenced the wide geographical range of this species. To date, this species was not detected in other bats, including those that were sympatric or shared shelters with Pteronotus. T. wauwau did not develop within mammalian cells, and was not infective to Balb/c mice or to triatomine vectors of T. cruzi and T. rangeli. CONCLUSIONS: Trypanosoma wauwau n. sp. was linked to Pteronotus bats. The positioning of the clade T. wauwau/T.spp-Neobats as the most basal Neotropical bat trypanosomes and closely related to an Australian lineage of trypanosomes provides additional evidence that the T. cruzi clade trypanosomes likely evolved from bats, and were dispersed in bats within and between continents from ancient to unexpectedly recent times.


Asunto(s)
Evolución Molecular , Variación Genética , Trypanosoma cruzi/clasificación , Trypanosoma cruzi/genética , Animales , Australia , Brasil , América Central , Quirópteros , Análisis por Conglomerados , ADN Protozoario/química , ADN Protozoario/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/genética , Ratones Endogámicos BALB C , Datos de Secuencia Molecular , Filogenia , ARN Ribosómico 18S/genética , ARN Lider Empalmado , Análisis de Secuencia de ADN , Homología de Secuencia , Trypanosoma cruzi/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA